
1

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 1

Real-Time 3D Graphics Architecture

Guest Lecture for CS 382m
Bill Mark, Oct. 26, 2005

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 2

My background

• 13 years of work in real-time graphics:
– UNC Chapel Hill, Stanford
– NVIDIA, SGI, Intel

• Technical lead at NVIDIA
– Cg – a programming language for graphics HW

• Current research:
– Future real-time graphics algorithms
– Single-chip highly-parallel hardware architectures

2

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 3

Dedicated graphics chip in modern PCs

CPU

Memory

Input/Output Glue Chip
(“South Bridge”)

Graphics
Processor

Memory Controller Chip
(“North Bridge”)

Memory

Memory

Memory

Disk, Keyboard, etc.

125 Million
transistors

222 Million
transistors

(Pentium4 Prescott,

.09u 1MB L2$)

(GeForce 6800,

.13u)

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 4

GPU has more bandwidth too

Figure: NVIDIA

3

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 5

CPU vs. Graphics Peak Performance

32 GB/sec8.4 GB/secMemory BW

63.7
(fragment unit)

15.2Peak GFLOPS

0.5 GHz3.8 GHzClock rate

ATI Radeon
X800

Pentium 4
1.06 GHz FSB

GFLOPS source: GFLOPS source: FatahalianFatahalian et al, GH2004et al, GH2004

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 6

Highly parallel, single chip architecture

22 Programmable Cores
152 FP32 mult/add units
22 rcp/sqrt units
32 GB/sec memory BW

GeForce 6800GeForce 6800

L2 Tex

Memory
Partition

Command and Data Fetch

Triangle Setup, Rasterizer

Shader Thread Dispatch

Fragment Crossbar

Memory
Partition

Memory
Partition

Memory
Partition

Z-Cull

Figure: NVIDIA

4

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 7

1 million pixels
@ 60 frames/sec:

60 million
pixels/sec.

Lots of work
for each pixel.

Task is computationally intensive

Half Life 2
Valve Software
Nov. 2004

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 8

L2 Tex

Memory
Partition

Command and Data Fetch

Triangle Setup, Rasterizer

Shader Thread Dispatch

Fragment Crossbar

Memory
Partition

Memory
Partition

Memory
Partition

Z-Cull

HW is programmable (for some units)

…
edgeMask = (dot(e, n) > 0.4) ? 1 : 0;
lpos = float3(3,3,3);
l = normalize(lpos - In.TEX7.xyz);
h = normalize(l + e);
…

5

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 9

“Mainstream” architects can learn from GPUs

• Parallelism is becoming more important
– Single thread vs. FLOPS/$ and FLOPS/Watt

• GPUs are first highly-parallel processors in PCs
– And now they’re programmable

• Games are major driver of PC performance
– Large market
– Performance is not yet “good enough”
– Innovative and talented software developers

• Willing to experiment
• Willing to endure (some) pain to get performance

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 10

Outline

• Fundamentals of 3D graphics
• Overall architecture of graphics processor
• Details of particular hardware units
• Questions

Please interrupt at any time to ask questions.

6

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 11

Fundamentals of 3D Graphics

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 12

Motivation for learning graphics fundamentals

• Q: I’m an architect. I do hardware, not algorithms.
Can’t we just skip ahead to the architecture?

A: Not really. You can’t understand 3D graphics
architectures without understanding 3D
graphics algorithms.

• Q: Could I design my new Acme FlexiGPU
architecture by optimizing for current
graphics applications/traces/benchmarks?

A: No, not if you want your architecture to
be relevant when it’s done.

7

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 13

Graphics applications and HW co-evolve

Graphics
Architectures

Graphics
Applications (e.g. games)

Architecture strongly influences applications

Goal: Best 60 Hz
image for $100 of
silicon

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 14

The rendering problem

• Given:
– 3D world

(objects and materials)
– Light locations
– A viewpoint

• Compute:
– 2D image seen from the

viewpoint

8

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 15

Geometry is modeled using triangle meshes

Image: Hughes Hoppe, Microsoft ResearchImage: Hughes Hoppe, Microsoft Research

AA
BB

11

22 33

44

Vertex Array
(x1, y1, z1)
(x2, y2, z2)
…

Index Array
V1, V2, V4 – represents Triangle A
V4, V2, V3 – represents Triangle B

Vertices are only stored once.
Triangles point to their vertices.

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 16

The Z-buffer algorithm

Figure: Prosise, How Computer Graphics Work

9

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 17

Z-buffer algorithm uses “brute force”

for each triangle A do
for each pixel in A do

Compute depth z and shade s of A at (i,j)
if z > Z-buffer [i,j] then

Z-buffer [i,j] ← z
Color-buffer[i,j] ← s

end if
end for

end for

- Touches each
triangle exactly
once.

- Application can
choose triangle
order. (and
associate
meaning with it)

- But:
Nearly-random
accesses to
memory.

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 18

L2 Tex

Memory
Partition

Command and Data Fetch

Triangle Setup, Rasterizer

Shader Thread Dispatch

Fragment Crossbar

Memory
Partition

Memory
Partition

Memory
Partition

Z-Cull

Z-buffer algorithm maps to giant pipeline

Znew < Zold?

Atomic:
Z compare;
Color R/M/W

10

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 19

Texture mapping adds detail to polygons

Use texture coordinates to map image to geometry

++ ==

00 11
00

11

uu
vv

(0, 0)

(0.5, 0.7)

(0.6,0.3)

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 20

Avoid texture artifacts with filtering operations

Simple texture sampling

Better: use MIP-mapping
(a form of filtered sampling)

Each pixel:
18 adds, 24 mul, 8 loads!
Use 16-bit arithmetic.
8 pixels/clock!

11

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 21

L2 Tex

Memory
Partition

Command and Data Fetch

Triangle Setup, Rasterizer

Shader Thread Dispatch

Fragment Crossbar

Memory
Partition

Memory
Partition

Memory
Partition

Z-Cull

Where texture HW lives in Z-buffer pipeline

One texture unit

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 22

Computing color at a pixel can be complex

• Compute color of surface
• Consider:

– Light positions
– Surface properties
– Surface texture
– Etc.

P = point on surfaceP = point on surface

??
PP

Lighting adds realism toLighting adds realism to
singlesingle--color surfacecolor surface

12

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 23

Variety in materials programmable shaders

• Real world has infinite variety of materials
– Need programmable shaders to describe them

• Example fragment program in Cg/HLSL:

void normalmapped(float2 normalMapTexCoord : TEXCOORD0,
…

out float4 color : COLOR,
uniform float ambient,
…)

{
float3 normalTex, …;
normalTex = tex2D(normalMap, normalMapTexCoord).xyz;
…
diffuse = saturate(dot(normal, normLightDir);
…
color = Kd * (ambient + diffuse) +

Ks * pow(specular, specularExponent;
}

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 24

Programming model makes parallelism easy

• Program is re-run for every fragment (or vertex)
• Perfect parallelism:

– Program cannot communicate with other fragments
– No persistent state (each fragment is independent)
– In some respects, a “stream programming” model:

• Each fragment gets one input record and one output record
• Fragment program = “stream kernel” or “filter”

Fragment #1
Fragment #2

……

13

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 25

L2 Tex

Memory
Partition

Command and Data Fetch

Triangle Setup, Rasterizer

Shader Thread Dispatch

Fragment Crossbar

Memory
Partition

Memory
Partition

Memory
Partition

Z-Cull

Where shader programs execute

Fragment program

Vertex program

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 26

Data type (precision) summary

Various floatVarious floatRasterizer

float32float32Vertex processor
(positions)

fixed8, float16fixed8Textures,
texture filter

fixed8, float16fixed8Framebuffer color,
blend unit

float32fixed10-12Fragment processor

NewOld

Increasing precision driven by:
- Programmable shading -- [fragment processor]
- High-dynamic-range rendering and framebuffers -- [texture, framebuffer, blend]
- Global illumination (mostly for future) -- [fragment processor, framebuffer, textures]

14

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 27

0 0 0 1new old

xx xy xz x

yx yy yz y

zx zy zz z

x R R R T x
y R R R T y
z R R R T z
w w

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Graphics HW supports 4 x FP32 register SIMD

4x4 rotation/translation/etc. matrix

Division is also important, but only need
scalar reciprocal instruction.

Lots of 4x4 matrix
operations, as well
as 3-vector math.

ISA support:
- 4-wide SIMD
- Dot product
- Multiply-accumulate

1

final new

x x
y y

w
z z

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 28

Architecture Discussion & Details

15

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 29

Why is graphics hardware fast?

• Specialization
– Gradually becoming less important (esp. for FLOPS)
– But still matters a lot

• Parallelization
– Rapidly becoming more important
– Two kinds:

• Task parallelism – pipeline of operations
• Data parallelism

– Architecture is optimized for throughput, not latency

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 30

Specialization

• Memory system
– Organize accesses for temporal and spatial locality

• Interacts strongly with parallel work scheduling

– Specialized compression of most memory traffic
– Specialized pre-fetching and caching

• Dedicated HW for hard-to-parallelize operations
– E.g. rasterization

• Dedicated HW for texture filtering
– Most computationally intensive task

• Overall data pipeline
– Esp. enforcement of ordering; culling optimizations

16

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 31

L2 Tex

Memory
Partition

Command and Data Fetch

Triangle Setup, Rasterizer

Shader Thread Dispatch

Fragment Crossbar

Memory
Partition

Memory
Partition

Memory
Partition

Z-Cull

Lots of data parallelism – at most stages

Z compare
[hardwired]

[hardwired]

[program]

[program
(except
texture)]

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 32

What is irrelevant to GPU’s being fast?

• Aggressive ILP
– Out-of-order execution
– Speculative execution
– Ultra-deep, ultra-high-frequency processor pipelines
– These techniques do not give good !/$

• Most architectural optimizations for low latency

17

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 33

Fragment processor

L2 Tex

Memory
Partition

Command and Data Fetch

Triangle Setup, Rasterizer

Shader Thread Dispatch

Fragment Crossbar

Memory
Partition

Memory
Partition

Memory
Partition

Z-Cull

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 34

Fragment programming model: A stream of tasks

Fragment
Processor

F1 F2 … Fn

Input stream
(from rasterizer)

Output stream
(to Z compare)

F1 F2 … Fn

READ-ONLY
OFF-CHIP
MEMORY

Architecture uses:
- Multiple cores
- Massive multithreading within each core

18

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 35

Stream model supports data parallelism

• Communication between elements is prohibited

Fragment
Unit #1

F1 F2 … Fn

F1 F2 … Fn

Fragment
Unit #3

Fragment
Unit #2

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 36

High-level arch of one fragment core

Source: NVIDA

NVIDIA
GeForce 6xxx series
(7xxx series is similar)

19

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 37

Slightly more detailed and realistic arch

Per cycle, per core

Figure: NVIDIA

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 38

Each pipeline stage does mini-VLIW

Result:
High throughput on
scalar operations as
well as 4-wide SIMD

Figure: NVIDIA

20

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 39

More architectural details

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 40

Massive multithreading can hide memory latency

• Consider texture mapping:

• Each fragment is a thread
• Context switch on texture fetch

– Must hide memory latency – cache miss rate > 10%
– Trend is towards dynamic scheduling

• Need 64+ live fragments per fragment processor!
– Fortunately, thread context is small (<< 100 bytes, typ.)

for each fragmentfor each fragment {{
compute_texture_addressescompute_texture_addresses();();
texelstexels = = memory_readmemory_read(texaddress1, 2, 3, 4, 5, 6, 7, 8);(texaddress1, 2, 3, 4, 5, 6, 7, 8);
compute_color(texelscompute_color(texels););

}}

(a.k.a. (a.k.a. ““Never stall on a cache missNever stall on a cache miss””))

21

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 41

Multithreaded prefetch also used for framebuffer

Figure: W. Park et al,Figure: W. Park et al,
An Effective Pixel Rasterization Pipeline ArchitectuAn Effective Pixel Rasterization Pipeline Architecture for 3D Rendering Processors, 2003re for 3D Rendering Processors, 2003

Also, see NVIDIA and ATI patents, e.g. US #6,734,861, filed Oct Also, see NVIDIA and ATI patents, e.g. US #6,734,861, filed Oct 2000.2000.

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 42

Framebuffer has R/W hazards

• Semantics say:
– Preserve ordering
– Atomic R/M/W for Z compare

• In practice:
– Semantics only matter for two fragments at same pixel
– Detect this and special case it

• Conceptually, 1 million locks (one for each pixel)
• Hash instead!

• All of this is hardwired
– Needs very high throughput
– One of the big “tar pits” for general purpose hardware

22

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 43

Maximize cache hit rates with 2D tiling

• Framebuffer and textures organized into tiles
– Allows capture of 2D spatial coherence by caches

• Rasterizer generates fragments in tile order
• All of this is hardwired

Reference:Reference:
McCormack et al,McCormack et al,
Neon: a singleNeon: a single--chip 3D workstation graphics accelerator, chip 3D workstation graphics accelerator,
19981998

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 44

Other important optimizations

• Early fragment kill
– Perform Z and/or stencil test before shading, texturing
– Be careful, since semantically it occurs afterward

• Hierarchical (low-res) Z/stencil buffers
– Keep low-res buffers on-chip
– Improves performance of early-discard tests
– Annoying interactions with other features

• E.g. Turn this stuff off if fragment shader can modify Z

23

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 45

Miscellaneous

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 46

Yield tricks

• Top-of-the-line HW has 16 fragment units
– But it’s quite hard to find these parts

• Almost-top HW has 12 fragment units
– Much easier to find these parts

• Why might that be?

24

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 47

General purpose computation on GPUs

• Use fragment processors as stream processors
• Specialized languages for this purpose

– Brook for GPU’s [Buck et al., 2003]
– Sh [McCool et al, 2004]

• Applications include:
– Image processing
– Some BLAS routines (single-precision only)
– Ray casting

• Hype exceeds reality
– But reality is slowly catching up

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 48

Full stream proc GPU

Current GPU’s
(efficient Z-buffer rendering,
with programmable shading)

Full stream
programming

(e.g. Imagine processor)

GPU stream
programming

- Tagged caches
- R/M/W blend,Z
- etc.

- Scatter to memory
- Conditional kernel outputs
- Efficient reduction
- etc.

25

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 49

Historical trends

• Yearly growth rates well above CPU rate of ~1.5
– While adding substantial new functionality!

• But growth rates for BW & die area probably unsustainable

222

121

63
57

25

9

4

Trnst
cnt (M)

.13

.13

.15

.18

.18

.22

.35

Proc
(um)

425

500

300
200

166

175

100

Clk
MHz

35.26800170GeForce 6800 Ultra2004

16.02000167GeForce FX2003

10.4120060GeForce4 Ti 46002002
7.480030GeForce32001

5.366425GeForce2 GTS2000

3.23509Riva TNT21999

1.61003Riva ZX1998

BW
GB/sec

Mfrag/
sec (*)

Mtri/
sec

NVIDIA
Product

Year

Source: Mark Kilgard, NVIDIA* Fragment fill rate for 1 texture.* Fragment fill rate for 1 texture.

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 50

Recap

26

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 51

Why is graphics hardware fast?

• Specialization
– Serial bottlenecks such as rasterization
– Memory access, caching, compression, addressing
– Ordering of parallel memory writes
– Shepherding of parallelism, data flows, communication
– Smart work avoidance: early Z tests, etc.
– Texture filtering

• Parallelism
– Multithreaded vertex processor
– Multithreaded fragment/texture processor
– “Multithreaded” ROP unit (Z test, etc)

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 52

Advantages of Z-buffer algorithm

• Reasonable computational cost
• Each polygon touched just once

– Application can feed polygons in any order.
– Works well for moving objects.

• Producer-consumer locality within HW pipeline
• Good spatial locality of memory accesses

– Texture
– Framebuffer

• Most parts of algorithm easily parallelized

27

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 53

The “tar pits” for conventional architects

• GPUs must optimize for throughput, not latency
– We see this trend emerging elsewhere, too.

• 3D graphics computations != signal processing
– Surprisingly irregular and complicated
– Especially with optimizations like compression

• Functionality changes rapidly
– Big mistake to design for old benchmarks
– Challenging for academics to keep up

• Specialized HW still critical to Z-buffer performance
• Architects must understand the application

– Perhaps generally true for parallel systems?

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 54

The Future

28

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 55

Near term (next two years)

• Additional pipeline stages become programmable
– E.g. Geometry subdivision/tesselation

• Additional flexibility in data flow, communication
– Easier to implement innovative graphics algorithms
– Easier to use GPU as “general purpose”

parallel processor.
• First real successes for using GPU as

“general purpose” processor
– But limitations of stream programming model

will also become apparent.

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 56

Longer term

Specialized < --------- > General

Sequential

Parallel

< --------------------------->

CPU

GPU ?

29

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 57

Forces driving long-term evolution

• Desire to accelerate other computations
– Collision detection and response, AI, etc.
– Scene management

• Desire for more realistic images
– Better shadows, indirect illumination, antialiasing, etc.
– Z buffer has trouble with needed visibility computations
– Possibilities include:

• Enhancements to Z buffer
• Raycasting visibility algorithms

• Work smarter, not harder
– Trend away from brute-force, one-size-fits-all algorithms

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 58

Long-term predictions

• Graphics algorithms continue to evolve rapidly
– End of Z-buffer as we know it

• Graphics is major driver of single-chip parallelism
– Return to “software rendering”
– Two parallel programming models: Streams and CSP

• One chip combines “CPU” and “GPU”
– Fine grained throughput-optimized cores
– Coarse grained latency-optimized cores
– Specialized HW for certain tasks
– Who makes it?
– What are details of its architecture?

30

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 59

Game consoles as innovation platform

• Clean slate design
– Minimal need for backward compatibility

• One company controls entire system design
– Graphics processor
– CPU
– APIs and programming languages
– Operating system
– Application software

• But economics still discourage radical designs

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 60

Open research questions

• How should real-time graphics algorithms
and architectures co-evolve?
– What new/enhanced algorithms? What HW?

• Specialized vs. General HW?
– What is the right balance?
– Is semi-specialized HW useful? (e.g. R/M/W)

• What programming model for parallel units?
– Stream, CSP, both, other?

• What granularity of parallel units?
– Lots of little ones vs. a few big ones vs. hybrids

• Can HW for graphics also accelerate other apps?

31

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 61

If you only remember one thing…

Thread-level parallelism will be
the most important technique

for achieving performance goals
in future commodity computer

architectures.

But exploiting it requires
more interaction between

application and architecture
than we’re accustomed to.

3D Graphics Architecture -- William Mark – Guest Lecture for CS382m -- Oct 26, 2005 62

The End

Questions?

