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14. Subdivision curves
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Reading

Recommended:

Stollnitz, DeRose, and Salesin.  Wavelets for 
Computer Graphics:  Theory and 
Applications, 1996, section 6.1-6.3, A.5.

Note: there is an error in Stollnitz, et al., section 
A.5.  Equation A.3 should read:

MV = VΛ
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Subdivision curves

Idea:

repeatedly refine the control polygon

curve is the limit of an infinite process

1 2 3P P P→ → →L

→∞
= lim j
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Q P
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Chaikin’s algorithm

Chakin introduced the following “corner-cutting”
scheme in 1974:

Start with a piecewise linear curve
Insert new vertices at the midpoints (the 
splitting step)
Average each vertex with the “next”
(clockwise) neighbor (the averaging step)
Go to the splitting step
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Averaging masks

The limit curve is a quadratic B-spline!

Instead of averaging with the nearest neighbor, 
we can generalize by applying an averaging 
mask during the averaging step:

In the case of Chaikin’s algorithm:

r =

−= K K1 0 1( , , , , )r r r r
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Can we generate other B-splines?

Answer: Yes
Lane-Riesenfeld algorithm (1980)

Use averaging masks from Pascal’s triangle:

Gives B-splines of degree n+1.
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Subdivide ad nauseum?

After each split-average step, we are closer to the 
limit curve.  

How many steps until we reach the final (limit) 
position?

Can we push a vertex to its limit position without 
infinite subdivision?  Yes!

8

One subdivision step

Consider the cubic B-spline subdivision mask:

Now consider what happens during splitting and 
averaging:
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Math for one subdivision step

Subdivision mask:

One subdivision step:

A C

B

a c

A C

B

split

Split: 1 ( )
2

= +a A B 1 ( )
2

= +c B C

( )1 1 2 1
4

average

A C

B

a cb

Average:
a and c do not change

1 ( 2 )
4

B= + +b a c
1 ( 6 )
8

= + +A B C
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Consolidated math for one step

Subdivision mask:

One subdivision step:

Consolidated math for one subdivision step:

A C

B
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repeat
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4
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Local subdivision
matrix ‘S’

jP1jP +
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Local subdivision matrix, cont’d

Tracking just the x components through 
subdivision:

The limit position of the x’s is then:

or as we’d say in calculus…

OK, so how do we apply a matrix an infinite 
number of times??

1 2 3 0j j j j
jP SP S SP S S SP S P− − −= = ⋅ = ⋅ ⋅ = =L

0P S P∞
∞=

0lim j
j

P S P∞ →∞
=
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Eigenvectors and eigenvalues

To solve this problem, we need to look at the 
eigenvectors and eigenvalues of S.  First, a 
review…

Let v be a vector such that:

Sv = λv

We say that v is an eigenvector with eigenvalue λ.

An nxn matrix can have n eigenvalues and 
eigenvectors:

If the eigenvectors are linearly independent 
(which means that S is non-defective), then they 
form a basis, and we can re-write P in terms of the 
eigenvectors:

i i
i

n
P a v=∑

λ

λ

=

=
M

1 1 1

n n n

Sv v

Sv v
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To infinity, but not beyond…

Now let’s apply the matrix to the vector X:

Applying it j times:

Let’s assume the eigenvalues are non-negative 
and sorted so that:

Now let j go to infinity:

If λ1 > 1, then:

If λ1 < 1, then:

If λ1 = 1, then:

1 0
i i i

n n n

i i i i i i iP SP S a v a Sv a vλ= = = =∑ ∑ ∑

0j
i i i

n n n
j j j j

i i i i i i iP S P S a v a S v a vλ= = = =∑ ∑ ∑

1 2 3 0nλ λ λ λ> ≥ ≥ ≥> L

0lim lim
i

n
j j

i i ij j
P S P a vλ∞ →∞ →∞

= = ∑
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Evaluation masks

What are the eigenvalues and eigenvectors of our 
cubic B-spline subdivision matrix?

We’re OK!

But what is the final position?

Almost done… from earlier we know that we
can find ‘a’, we but didn’t give specifics.
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Evaluation masks, cont’d

To finish up, we need to compute a1.

Remember:

Rewrite as:

We need to solve for the vector ‘A’.
(This is really just a change of basis for 
representing the vector P).   The solution is:

Now we can compute the limit position:

We call u1 the evaluation mask.

0 1 1 2 2 n nP a v a v a v= + + +L

01 1
TP a u P∞ = =

0

0

1

1 1

2 2

T

T

T
n n

A P

a u
a u

P

a u

−=

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

V

L L

L L

M M

L L

1

2
0 1 2 n

n

a
a

P v v v A

a

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

V
M M M

L
M

M M M

16

Evaluation masks, cont’d

Note that we need not start with the 0th level control 
points and push them to the limit.  

If we subdivide and average the control polygon j
times, we can push the vertices of the refined polygon 
to the limit as well:

So far we’ve been looking at math for a subdivision 
function f(x).

For a 2D parametric subdivision curve, (x(u), y(u)),
just apply these formulas separately for the x(u) and 
y(u) functions.

1j j
TP S P u P∞

∞= =
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Recipe for subdivision curves

The evaluation mask for the cubic B-spline is:

Now we can cook up a simple procedure for 
creating subdivision curves:

Subdivide (split+average) the control 
polygon a few times.  Use the averaging 
mask.
Push the resulting points to the limit 
positions.  Use the evaluation mask.

( )1 1 4 1
6
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Derivative of subdiv. function

What is the tangent to the cubic B-spline function?

Consider the formula for P again:

Where:

Derivative is just:
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Tangent analysis for 2D curve

What is the tangent to a parametric cubic B-spline
2D curve?  

Using a similar derivation to what we just did for a 
1D function (but omitting details):

Thus, we can compute the tangent using the 
second left eigenvector!  This analysis holds for 
general subdivision curves and gives us the 
tangent mask.
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Approximation vs. Interpolation of 
Control Points

Previous subdivision scheme approximated 
control points.  Can we interpolate them?

Yes: DLG interpolating scheme (1987)

Slight modification to subdivision algorithm:

splitting step introduces midpoints
averaging step only changes midpoints

For DLG (Dyn-Levin-Gregory), use:

Since we are only changing the midpoints, the 
points after the averaging step do not move.  

1 ( 2,5,10,5, 2)
16

r = − −
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Next time: Animation Principles

Topic:

How does an artist make
a “good” animation?

Read:
• John Lasseter.  Principles of traditional
animation applied to 3D computer animation.
SIGGRAPH 1987.
[Course reader pp. 295-304]

Recommended:
• Frank Thomas and Ollie Johnston, Disney
animation: The Illusion of Life, Hyperion, 1981.


