

Reading

Recommended:

- Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and
Applications, 1996, section 6.1-6.3, A.5.

Note: there is an error in Stollnitz, et al., section
A.5. Equation A. 3 should read:
$\mathbf{M V}=\mathbf{V} \Lambda$

Subdivision curves

Chaikin's algorithm

Chakin introduced the following "corner-cutting" scheme in 1974:

- repeatedly refine the control polygon

$$
P^{1} \rightarrow P^{2} \rightarrow P^{3} \rightarrow \cdots
$$

- curve is the limit of an infinite process

$$
Q=\lim _{j \rightarrow \infty} P^{j}
$$

- Start with a piecewise linear curve
- Insert new vertices at the midpoints (the splitting step)
- Average each vertex with the "next" (clockwise) neighbor (the averaging step)
- Go to the splittina sted

Old vertex New vertex

1. Split

2. Spli
3. Average

Averaging masks

The limit curve is a quadratic B-spline!
Instead of averaging with the nearest neighbor, we can generalize by applying an averaging mask during the averaging step:

$$
r=\left(\ldots, r_{-1}, r_{0}, r_{1}, \ldots\right)
$$

In the case of Chaikin's algorithm:

$$
r=
$$

Can we generate other B-splines?

Answer: Yes
Lane-Riesenfeld algorithm (1980)
Use averaging masks from Pascal's triangle:

$$
r=\frac{1}{2^{n}}\left(\binom{n}{0},\binom{n}{1}, \cdots,\binom{n}{n}\right)
$$

Gives B-splines of degree $n+1$.

$\mathrm{n}=0$:	1
$\mathrm{n}=1$:	1
	11
$\mathrm{n}=2$:	1
	11
	12

Subdivide ad nauseum?

One subdivision step

Consider the cubic B-spline subdivision mask:

```
\frac{1}{4}(\begin{array}{lll}{1}&{2}&{1}\end{array})
```

How many steps until we reach the final (limit) position?

Now consider what happens during splitting and averaging:
Can we push a vertex to its limit position without infinite subdivision? Yes!

Consolidated math for one step

Subdivision mask:

$$
\frac{1}{4}\left(\begin{array}{lll}
1 & 2 & 1
\end{array}\right)
$$

One subdivision step:

Consolidated math for one subdivision step:

$$
\begin{gathered}
{\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c}
\end{array}\right]=\frac{1}{8}\left[\begin{array}{lll}
4 & 4 & 0 \\
1 & 6 & 1 \\
0 & 4 & 4
\end{array}\right]\left[\begin{array}{l}
\mathbf{A} \\
\mathbf{B} \\
\mathbf{C}
\end{array}\right]} \\
P_{j+1} \underset{\substack{\text { Local subdivision } \\
\text { matrix ' } \mathrm{S}^{\prime}}}{P_{j}} P_{j} \\
\hline
\end{gathered}
$$

Local subdivision matrix, cont'd

Tracking just the x components through subdivision:

$$
P_{j}=S P_{j-1}=S \cdot S P_{j-2}=S \cdot S \cdot S P_{j-3}=\cdots=S^{j} P_{0}
$$

The limit position of the x 's is then:

$$
P_{\infty}=S^{\infty} P_{0}
$$

or as we'd say in calculus...

$$
P_{\infty}=\lim _{j \rightarrow \infty} S^{j} P_{0}
$$

OK, so how do we apply a matrix an infinite number of times??

Eigenvectors and eigenvalues

To solve this problem, we need to look at the eigenvectors and eigenvalues of S. First, a review...

Let v be a vector such that:

$$
S v=\lambda v
$$

We say that v is an eigenvector with eigenvalue λ.
An $n \times n$ matrix can have n eigenvalues and eigenvectors:

$$
\begin{gathered}
S V_{1}=\lambda_{1} v_{1} \\
\vdots \\
S V_{n}=\lambda_{n} v_{n}
\end{gathered}
$$

If the eigenvectors are linearly independent (which means that S is non-defective), then they form a basis, and we can re-write P in terms of the eigenvectors:

$$
P=\sum_{i}^{n} a_{i} v_{i}
$$

To infinity, but not beyond...

Now let's apply the matrix to the vector X :

$$
P_{1}=S P_{0}=S \sum_{i}^{n} a_{i} v_{i}=\sum_{i}^{n} a_{i} S v_{i}=\sum_{i}^{n} a_{i} \lambda_{i} v_{i}
$$

Applying it j times:

$$
P_{j}=S^{j} P_{0}=S^{j} \sum_{i}^{n} a_{i} v_{i}=\sum_{i}^{n} a_{i} S^{j} v_{i}=\sum_{i}^{n} a_{i} \lambda_{i}^{j} v_{i}
$$

Let's assume the eigenvalues are non-negative and sorted so that:

$$
\lambda_{1}>\lambda_{2}>\lambda_{3} \geq \cdots \geq \lambda_{n} \geq 0
$$

Now let j go to infinity:

$$
P_{\infty}=\lim _{j \rightarrow \infty} S^{j} P_{0}=\lim _{j \rightarrow \infty} \sum_{i}^{n} a_{i} \lambda_{i}^{j} v_{i}
$$

If $\lambda_{1}>1$, then:
If $\lambda_{1}<1$, then:
If $\lambda_{1}=1$, then:

Evaluation masks

What are the eigenvalues and eigenvectors of our cubic B-spline subdivision matrix?

$$
\begin{array}{lll}
\lambda_{1}=1 & \lambda_{2}=\frac{1}{2} & \lambda_{3}=\frac{1}{4} \\
v_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) & v_{2}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) & v_{3}=\left(\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right)
\end{array}
$$

We're OK!
But what is the final position?

$$
\begin{aligned}
& P_{\infty}=\lim _{j \rightarrow \infty}\left(a_{1} \lambda_{1}^{j} v_{1}+a_{2} \lambda_{2}^{j} v_{2}+a_{3} \lambda_{3}^{j} v_{3}\right) \\
& P_{\infty}=
\end{aligned}
$$

Almost done... from earlier we know that we can find 'a', we but didn't give specifics.

Evaluation masks, cont'd

To finish up, we need to compute a_{1}.

Evaluation masks, cont'd

Note that we need not start with the $0^{\text {th }}$ level control points and push them to the limit.
Remember: $\quad P_{0}=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}$
Rewrite as: $\quad P_{0}=\left[\begin{array}{cccc}\vdots & \vdots & & \vdots \\ v_{1} & v_{2} & \cdots & v_{n} \\ \vdots & \vdots & & \vdots\end{array}\right]\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right]=\mathbf{V} A$
We need to solve for the vector ' A '.
(This is really just a change of basis for representing the vector P). The solution is:

$$
\begin{gathered}
A=\mathbf{V}^{-1} P_{0} \\
{\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{ccc}
\cdots & u_{1}^{T} & \cdots \\
\cdots & u_{2}^{T} & \cdots \\
& \vdots & \\
\cdots & u_{n}^{T} & \cdots
\end{array}\right]}
\end{gathered}
$$

Now we can compute the limit position:

$$
P_{\infty}=a_{1}=u_{1}^{T} P_{0}
$$

We call u_{1} the evaluation mask.

Recipe for subdivision curves

Derivative of subdiv. function

The evaluation mask for the cubic B-spline is:
What is the tangent to the cubic B -spline function?

Consider the formula for P again:

$$
\begin{aligned}
& P_{j}=a_{1} \lambda_{1}^{j} v_{1}+a_{2} \lambda_{2}^{j} v_{2}+a_{3} \lambda_{3}^{j} v_{3} \\
& P_{j}=a_{1}(1)^{j}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+a_{2}\left(\frac{1}{2}\right)^{j}\left(\begin{array}{l}
-1 \\
0 \\
1
\end{array}\right)+a_{3}\left(\frac{1}{4}\right)^{j}\left(\begin{array}{l}
2 \\
-1 \\
2
\end{array}\right)
\end{aligned}
$$

Where: polygon a few times. Use the averaging mask.

- Push the resulting points to the limit positions. Use the evaluation mask.

Tangent analysis for 2D curve

What is the tangent to a parametric cubic B-spline 2D curve?

Using a similar derivation to what we just did for a 1D function (but omitting details):

$$
\begin{aligned}
\mathbf{t}= & \lim _{j \rightarrow \infty} \frac{P_{\text {Center }, j}-P_{\text {Left }, j}}{\left\|P_{\text {Center }, j}-P_{\text {Left }, j}\right\|} \\
& =\frac{u_{2}^{T} P_{0}}{\left\|u_{2}^{T} P_{0}\right\|}
\end{aligned}
$$

Thus, we can compute the tangent using the second left eigenvector! This analysis holds for general subdivision curves and gives us the tangent mask.

Approximation vs. Interpolation of Control Points

Previous subdivision scheme approximated control points. Can we interpolate them?

Yes: DLG interpolating scheme (1987)
Slight modification to subdivision algorithm:

- splitting step introduces midpoints
- averaging step only changes midpoints

For DLG (Dyn-Levin-Gregory), use:
$r=\frac{1}{16}(-2,5,10,5,-2)$

Since we are only changing the midpoints, the points after the averaging step do not move.

Next time: Animation Principles

Topic:
How does an artist make
a "good" animation?
Read:

- John Lasseter. Principles of traditional
animation applied to 3D computer animation. SIGGRAPH 1987.
[Course reader pp. 295-304]
Recommended:
- Frank Thomas and Ollie Johnston, Disney animation: The Illusion of Life, Hyperion, 1981.

