	Reading
14. Subdivision curves	Recommended: • Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications, 1996, section 6.1-6.3, A.5. Note: there is an error in Stollnitz, et al., section A.5. Equation A.3 should read: $MV = V\Lambda$
1	2

Idea:

• repeatedly refine the control polygon

• curve is the limit of an infinite process

Can we	e generate other B-splines?	
Answer: ` I	Yes Lane-Riesenfeld algorithm (1980)	
Use aver	raging masks from Pascal's triangle:	
	$r = \frac{1}{2^n} \left(\binom{n}{0}, \binom{n}{1}, \cdots, \binom{n}{n} \right)$	
Gives B-s	Gives B-splines of degree <i>n</i> +1.	
n=0:	1	
n=1:	1 1 1	
n=2:	1 1 1 1 2 1	
		6

Consider the cubic B-spline subdivision mask:

Now consider what happens during splitting and

Local subdivision matrix, cont'd

Tracking just the *x* components through subdivision:

$$P_{j} = SP_{j-1} = S \cdot SP_{j-2} = S \cdot S \cdot SP_{j-3} = \dots = S^{j}P_{0}$$

The limit position of the x's is then:

 $P_{\infty} = S^{\infty} P_{0}$

or as we'd say in calculus...

 $P_{\infty} = \lim_{j \to \infty} S^j P_0$

OK, so how do we apply a matrix an infinite number of times??

11

Eigenvectors and eigenvalues

To solve this problem, we need to look at the eigenvectors and eigenvalues of *S*. First, a review...

Let *v* be a vector such that:

$$Sv = \lambda v$$

We say that v is an eigenvector with eigenvalue λ .

An *n*x*n* matrix can have *n* eigenvalues and eigenvectors: $Sv_1 = \lambda_1 v_1$ \vdots $Sv_n = \lambda_n v_n$

If the eigenvectors are linearly independent (which means that *S* is *non-defective*), then they form a basis, and we can re-write *P* in terms of the eigenvectors: $P = \sum_{i=1}^{n} a_i v_i$

To infinity, but not beyond...

Now let's apply the matrix to the vector X:

$$P_1 = SP_0 = S\sum_{i}^{n} a_i v_i = \sum_{i}^{n} a_i Sv_i = \sum_{i}^{n} a_i \lambda_i v_i$$

Applying it *j* times:

$$P_{j} = S^{j}P_{0} = S^{j}\sum_{i}^{n}a_{i}v_{i} = \sum_{i}^{n}a_{i}S^{j}v_{i} = \sum_{i}^{n}a_{i}\lambda_{i}^{j}v_{i}$$

Let's assume the eigenvalues are non-negative and sorted so that:

$$\lambda_1 > \lambda_2 > \lambda_3 \ge \cdots \ge \lambda_n \ge 0$$

Now let *j* go to infinity:

$$P_{\infty} = \lim_{j \to \infty} S^{j} P_{0} = \lim_{j \to \infty} \sum_{i}^{n} a_{i} \lambda_{i}^{j} v_{i}$$

If $\lambda_1 > 1$, then:

If $\lambda_1 < 1$, then:

If $\lambda_1 = 1$, then:

13

Evaluation masks

What are the eigenvalues and eigenvectors of our cubic B-spline subdivision matrix?

$$\lambda_1 = 1 \qquad \lambda_2 = \frac{1}{2} \qquad \lambda_3 = \frac{1}{4}$$
$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad v_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \qquad v_3 = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$$

We're OK!

But what is the final position?

$$P_{\infty} = \lim_{j \to \infty} \left(a_1 \lambda_1^j v_1 + a_2 \lambda_2^j v_2 + a_3 \lambda_3^j v_3 \right)$$

 $P_{\infty} =$

Almost done... from earlier we know that we can find 'a', we but didn't give specifics.

15

Evaluation masks, cont'd

Note that we need not start with the 0th level control points and push them to the limit.

If we subdivide and average the control polygon j times, we can push the vertices of the refined polygon to the limit as well:

$$P_{\infty} = S^{\infty} P_j = u_1^T P_j$$

So far we've been looking at math for a subdivision function f(x).

For a 2D parametric subdivision curve, (x(u), y(u)), just apply these formulas separately for the x(u) and y(u) functions.

Recipe for subdivision curves

The evaluation mask for the cubic B-spline is:

$$\frac{1}{6}(1 \ 4 \ 1)$$

Now we can cook up a simple procedure for creating subdivision curves:

 Subdivide (split+average) the control polygon a few times. Use the averaging mask.

17

• Push the resulting points to the limit positions. Use the evaluation mask.

Derivative of subdiv. function

What is the tangent to the cubic B-spline function? Consider the formula for P again: $P_{i} = a_{1}\lambda_{1}^{j}v_{1} + a_{2}\lambda_{2}^{j}v_{2} + a_{3}\lambda_{3}^{j}v_{3}$ $P_{j} = a_{1}(1)^{j} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + a_{2}(\frac{1}{2})^{j} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + a_{3}(\frac{1}{4})^{j} \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$ Where: $P_{j} = \begin{bmatrix} left \\ center \end{bmatrix}$ right Derivative is just: $P' = \lim_{j \to \infty} \frac{center - left}{\Delta x} = \lim_{j \to \infty} \frac{center - left}{\frac{1}{2^{j}}}$ $P' = \lim_{j \to \infty} \left(a_2 \left(\frac{1}{2}\right)^j \frac{0+1}{\frac{1}{2^{j}}} \right) = a_2 = u_2^T P_0$

Tangent analysis for 2D curve

What is the tangent to a parametric cubic B-spline **2D curve**?

Using a similar derivation to what we just did for a 1D function (but omitting details):

$$\mathbf{t} = \lim_{j \to \infty} \frac{P_{Center,j} - P_{Left,j}}{\left\| P_{Center,j} - P_{Left,j} \right\|}$$
$$= \frac{u_2^T P_0}{\left\| u_2^T P_0 \right\|}$$

Thus, we can compute the tangent using the *second* left eigenvector! This analysis holds for general subdivision curves and gives us the **tangent mask**.

19

Approximation vs. Interpolation of Control Points

Previous subdivision scheme *approximated* control points. Can we *interpolate* them?

Yes: DLG interpolating scheme (1987)

Slight modification to subdivision algorithm:

- splitting step introduces midpoints
- averaging step only changes midpoints

For DLG (Dyn-Levin-Gregory), use:

Since we are only changing the midpoints, the points after the averaging step do not move.

Next time: Animation Principles

Topic:

How does an artist make a "good" animation?

Read:

 John Lasseter. Principles of traditional animation applied to 3D computer animation. SIGGRAPH 1987.
[Course reader pp. 295-304]

Recommended:

• Frank Thomas and Ollie Johnston, Disney animation: The Illusion of Life, Hyperion, 1981.