

## Reading

Optional

- Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics and Geometric Modeling, 1987. (See course reader.)


## Parametric curves

We use parametric curves, $Q(u)=(x(u), y(u))$,
where $x(u)$ and $y(u)$ are cubic polynomials:

$$
\begin{aligned}
& x(u)=A u^{3}+B u^{2}+C u+D \\
& y(u)=E u^{3}+F u^{2}+G u+H
\end{aligned}
$$

Advantages:

- easy (and efficient) to compute
- "well behaved"
- infinitely differentiable

We also assume that $u$ varies from 0 to 1 :


## Various ways to set $A, B, C, D$

$$
x(u)=A u^{3}+B u^{2}+C u+D
$$

0) Directly - non-intuitive; not very useful.
1) Set positions and derivatives of endpoints: "Hermite Curve"
2) Use "control points" that indirectly influence the curve:
"Bezier curve": - interpolates endpoints

- does not interpolate middle control points
"B-spline"
- does not interpolate ANY control point:



## Splines = join cubic curves



Considerations
What kind of continuity at join points ("knots")?

$$
\begin{aligned}
& \mathrm{C} 0=\text { value } \\
& \mathrm{C} 1=\text { first derivative }
\end{aligned}
$$

C2 = second derivative

How do control points work?
Spline summary
Joined Hermite curves:
C1 continuity
Interpolates control points
B-splines:
C2 continuity
Does not interpolate control points
Can we get...
C2 continuity
Interpolates control points
That's what we'll talk about towards
the end of this lecture.
But first, some other useful tips.

|  |  |
| ---: | ---: |
| Useful tips for Bézier curves |  |
|  |  |
| 8 |  |
| 8 |  |

## Displaying Bézier curves

How could we draw one of these things?


It would be nice if we had an adaptive algorithm, that would take into account flatness.

```
DisplayBezier( V0, V1, V2, V3 )
begin
    if (FlatEnough( V0, V1, V2, V3 ) )
        Line( V0, V3 );
    else
        something;
end;
```


## Subdivide and conquer



## Testing for flatness



Compare total length of control polygon to length of line connecting endpoints:

$$
\frac{\left|V_{0}-V_{1}\right|+\left|V_{1}-V_{2}\right|+\left|V_{2}-V_{3}\right|}{\left|V_{0}-V_{3}\right|}<1+\varepsilon
$$

## Simple splines

Join several Bezier curves:

- Make derivatives match (Hermite curve)
- You still have ability to pick what that matched derivative is.



## Catmull-Rom splines

If we set each derivative to be one half of the vector between the previous and next controls, we get a Catmull-Rom spline.

This leads to:

$$
\begin{aligned}
& V_{0}=P_{1} \\
& V_{1}=P_{1}+\frac{1}{6}\left(P_{2}-P_{0}\right) \\
& V_{2}=P_{2}-\frac{1}{6}\left(P_{3}-P_{1}\right) \\
& V_{3}=P_{2}
\end{aligned}
$$



## Tension control

We can give more control by exposing the derivative scale factor as a parameter:

$$
\begin{aligned}
& V_{0}=P_{1} \\
& V_{1}=P_{1}+\frac{\tau}{3}\left(P_{2}-P_{0}\right) \\
& V_{2}=P_{2}-\frac{\tau}{3}\left(P_{3}-P_{1}\right) \\
& V_{3}=P_{2}
\end{aligned}
$$

The parameter $\tau$ controls the tension. Catmull-
Rom uses $\tau=1 / 2$. Here's an example with $\tau=3 / 2$.



## Endpoints of B-splines

We can see that B-splines don't interpolate the control points.

It would be nice if we could at least control the endpoints of the splines explicitly.

There's a trick to make the spline begin and end at control points by repeating them.

In the example below, let's force interpolation of the last endpoint: (use endpoint 3 times)

$\begin{array}{llllll}B_{0} & B_{1} & B_{2} & B_{3} & B_{4} & B_{5}\end{array}$


## Closing the loop

What if we want a closed curve, i.e., a loop?

With Catmull-Rom and B-spline curves, this is easy:


## $\mathbf{C}^{2}$ interpolating splines

How can we keep the $C^{2}$ continuity we get with $B$ splines but get interpolation, too?

Let's start with connected cubic curves.
We'll think of each cubic segment as a Hermite curve, for which we get to set the position and derivative of the endpoints.

That leaves us with a spline that's C 0 and C 1 :


But interestingly, we still get to choose the values of the (shared) first derivatives at the join points. Is there a way to set those derivatives to get other useful properties?




## Match the second derivatives



Now, symbolically set the second derivatives to be equal.

For P1...
blah(D1, D2, ...) = blah2(D1, D2, ...)
For P2
blah(D1, D2, ...) = blah2(D1, D2, ...)
$\qquad$

## Matching the derivatives, cont.

How many equations is this? m-1

How many unknowns are we solving for? $m+1$

## Not quite done yet

We have two additional degrees of freedom, which we can nail down by imposing more conditions on the curve.

There are various ways to do this. We'll use the variant called natural $C^{2}$ interpolating splines, which requires the second derivative to be zero at the endpoints.

This condition gives us the two additional equations we need. At the $P_{0}$ endpoint, it is:

$$
Q_{0}^{\prime \prime}(0)=0
$$

At the $P_{m}$ endpoint, we have:

$$
Q_{m-1}^{\prime \prime}(1)=0
$$

## Solving for the derivatives

Let's collect our m+1 equations into a single linear system:

$$
\left[\begin{array}{cccccc}
2 & 1 & & & & \\
1 & 4 & 1 & & & \\
& 1 & 4 & 1 & & \\
& & & \ddots & & \\
& & & 1 & 4 & 1 \\
& & & & 1 & 2
\end{array}\right]\left[\begin{array}{c}
D_{0}^{T} \\
D_{1}^{T} \\
D_{2}^{T} \\
\vdots \\
D_{m-1}^{T} \\
D_{m}^{T}
\end{array}\right]=\left[\begin{array}{c}
3\left(P_{1}-P_{0}\right)^{T} \\
3\left(P_{2}-P_{0}\right)^{T} \\
3\left(P_{3}-P_{1}\right)^{T} \\
\vdots \\
3\left(P_{m}-P_{m-2}\right)^{T} \\
3\left(P_{m}-P_{m-1}\right)^{T}
\end{array}\right]
$$

It's easier to solve than it looks.
See the notes from Bartels, Beatty, and Barsky for details.

## $C^{2}$ interpolating spline

Once we've solved for the real $D_{i}$ s, we can plug them in to find our Bézier control points and draw the final spline:


Have we lost anything?
=> Yes, local control.

## Next time: Subdivision curves

Basic idea:
Represent a curve as an iterative algorithm, rather than as an explicit function.

Reading:

- Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications, 1996, section 6.1-6.3, A.5.
[Course reader pp. 248-259 and pp. 273-274]

