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14. Subdivision curves
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Reading

Recommended:

Stollnitz, DeRose, and Salesin.  Wavelets for 
Computer Graphics:  Theory and 
Applications, 1996, section 6.1-6.3, A.5.

Note: there is an error in Stollnitz, et al., section 
A.5.  Equation A.3 should read:

MV = VΛ
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Subdivision curves

Idea:

repeatedly refine the control polygon

curve is the limit of an infinite process

1 2 3P P P→ → →

→∞
= lim j
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Q P
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Chaikin’s algorithm

Chakin introduced the following “corner-cutting” 
scheme in 1974:

Start with a piecewise linear curve
Insert new vertices at the midpoints (the 
splitting step)
Average each vertex with the “next” 
(clockwise) neighbor (the averaging step)
Go to the splitting step
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Averaging masks

The limit curve is a quadratic B-spline!

Instead of averaging with the nearest neighbor, 
we can generalize by applying an averaging 
mask during the averaging step:

In the case of Chaikin’s algorithm:

r =

−= … …1 0 1( , , , , )r r r r
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Can we generate other B-splines?

Answer: Yes
Lane-Riesenfeld algorithm (1980)

Use averaging masks from Pascal’s triangle:

Gives B-splines of degree n+1.
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Subdivide ad nauseum?

After each split-average step, we are closer to the 
limit curve.  

How many steps until we reach the final (limit) 
position?

Can we push a vertex to its limit position without 
infinite subdivision?  Yes!
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Local subdivision matrix

Consider the cubic B-spline subdivision mask:

Now consider what happens during splitting and 
averaging:

We can write equations that relate points at one 
subdivision level to points at the previous:

( )1 1 2 1
4

( )

( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1* 0 0

1* 0 0

1 0 1* 0* 0 0 0 0

1 1* 0 1* 0 0 0

1 0 1* 0 0 0 0 0

1
2
1
2
1 1 12 2 2 4 4
4 4 8
1 12 6
4 8
1 1 12 2 2 4 4
4 4 8

L L C

R RC

L L L L LC C C

L R L RC C C

R R R R RC C C

Q Q Q

Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

= +

= +

= + + = + = +

= + + = + +

= + + = + = +



5

9

Local subdivision matrix

We can write this as a recurrence relation in 
matrix form:

Where the Q’s are (for convenience) row vectors 
and S is the local subdivision matrix.

We can think about the behavior of each 
coordinate independently.  For example, the x-
coordinate:

1

1

1

1

4 4 0
1 1 6 1
8

0 4 4

j j
L L
j j
C C
j j
R R

j j

Q Q

Q Q

Q Q

S

−

−

−

−

⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

=Q Q

1

1

1

4 4 0
1 1 6 1
8

0 4 4

j j
L L
j j
C C
j j
R R

j j-1

x x

x x

x x

X = SX

−

−

−

⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

10

Local subdivision matrix, cont’d

Tracking just the x components through 
subdivision:

The limit position of the x’s is then:

OK, so how do we apply a matrix an infinite 
number of times??

− − −= = ⋅ = ⋅ ⋅ = =j j j j jX SX S SX S S SX S X1 2 3 0

∞
→∞

= 0lim j
j

X S X
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Eigenvectors and eigenvalues

To solve this problem, we need to look at the 
eigenvectors and eigenvalues of S.  First, a 
review…

Let v be a vector such that:

Sv = λv

We say that v is an eigenvector with eigenvalue λ.

An nxn matrix can have n eigenvalues and 
eigenvectors:

If the eigenvectors are linearly independent 
(which means that S is non-defective), then they 
form a basis, and we can re-write X in terms of the 
eigenvectors:

i i
i

n
X av=∑

λ

λ

=

=

1 1 1

n n n

Sv v

Sv v
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To infinity, but not beyond…

Now let’s apply the matrix to the vector X:

Applying it j times:

Let’s assume the eigenvalues are non-negative 
and sorted so that:

Now let j go to infinity:

If λ1 > 1, then:

If λ1 < 1, then:

If λ1 = 1, then:
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Evaluation masks

What are the eigenvalues and eigenvectors of our 
cubic B-spline subdivision matrix?

We’re OK!

But where did the x-coordinates end up?

What about the y-coordinates?
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Evaluation masks, cont’d

To finish up, we need to compute a1.  First, we can 
reorganize the expansion of X into the eigenbasis:

We can then solve for the coefficients in this new basis:

Now we can compute the limit position of the x-
coordinate:

We call u1 the evaluation mask.
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Evaluation masks, cont’d

Note that we need not start with the 0th level control 
points and push them to the limit.  

If we subdivide and average the control polygon j
times, we can push the vertices of the refined polygon 
to the limit as well:

The same result obtains for the y-coordinate:

∞ ∞= =j jTx S X u X1

∞ ∞= =j jTy S Y u Y1
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Left eigenvectors

What are these u-vectors?  Consider the eigenvector 
relation:

We can re-write this as a matrix:

where Λ is a diagonal matrix filled with the eigenvalues of 
S.

Now lets multiply both sides by V-1 from the left and right 
and then simplify:

Thus, we find that the u-vectors obey the relation:

These are the “left eigenvectors” of S.  (Alternatively, 
they are the eigenvectors of ST.)
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Recipe for subdivision curves

The evaluation mask for the cubic B-spline is:

Now we can cook up a simple procedure for 
creating subdivision curves:

Subdivide (split+average) the control 
polygon a few times.  Use the averaging 
mask.
Push the resulting points to the limit 
positions.  Use the evaluation mask.

( )1 1 4 1
6
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Tangent analysis
What is the tangent to the cubic B-spline curve?  

First, let’s consider how we represent the x and y 
coordinate neighborhoods:

We can view the point neighborhoods then as:

After j subdivisions, we would get:

We can write this more explicitly as:
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Tangent analysis (cont’d)

The tangent to the curve is along the direction:

What’s wrong with this definition?

Instead, we’ll find the normalized tangent direction :

Now, let’s look at the “right” and “center” points in 
isolation:

The difference between these is:
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The tangent mask
And now computing the tangent:

Thus, we can compute the tangent using the second left 
eigenvector!  This analysis holds for general subdivision 
curves and gives us the tangent mask.
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Approximation vs. Interpolation of 
Control Points

Previous subdivision scheme approximated 
control points.  Can we interpolate them?

Yes: DLG interpolating scheme (1987)

Slight modification to subdivision algorithm:

splitting step introduces midpoints
averaging step only changes midpoints

For DLG (Dyn-Levin-Gregory), use:

Since we are only changing the midpoints, the 
points after the averaging step do not move.  

1 ( 2,5,10,5, 2)
16

r = − −


