
1

1

12. C2-interpolating curves
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Reading

Optional

Bartels, Beatty, and Barsky.  An Introduction 
to Splines for use in Computer Graphics and 
Geometric Modeling, 1987.  (See course 
reader.)
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C2 interpolating splines

How can we keep the C2 continuity we get with B-
splines but get interpolation, too?

Here’s the idea behind C2 interpolating splines.  
Suppose we had cubic Béziers connecting our 
control points P0, P1, P2, …, Pm and that we 
somehow knew the first derivative of the spline at 
each point.

Let’s say (V0,V1,V2,V3) are the first set of control 
points, and (W0,W1,W2,W3) are the second set.  
What are the V’s and W’s in terms of P’s and D’s?
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We can write out these relationships as:

Now what we need to do is solve for the 
derivatives.  These equations  already imply C0

and C1 continuity. 

Now we’ll add C2 continuity :

Substituting the top set of equations into this last 
equation, we find:

Finding the derivatives
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Finding the derivatives, cont.

We can repeat this analysis for every pair of 
neighboring Bezier curve segments, giving us:

How many equations is this?   m-1

How many unknowns are we solving for?  m+1
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Not quite done yet

We have two additional degrees of freedom, 
which we can nail down by imposing more 
conditions on the curve.

There are various ways to do this.  We’ll use the 
variant called natural C2 interpolating splines, 
which requires the second derivative to be zero at 
the endpoints.

This condition gives us the two additional 
equations we need.  At the P0 endpoint, it is:

Let’s say that the last set of control points are 
(U0,U1,U2,U3).  Then, at the Pm endpoint, we 
have:

These constraints imply:
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Solving for the derivatives

Let’s collect our m+1 equations into a single linear 
system:

It’s easier to solve than it looks.  [Note: the 
elements in the vectors are each points which are 
represented with their transposes to make the 
math work out.]

We can use forward elimination to zero out 
everything below the diagonal, then back 
substitution to compute each D value.

Note: technically speaking, we need to put the 
transposes of D and P vectors in the matrices.  
We’ll omit this for ease of reading.
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Forward elimination
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First, for notational convenience, we set re-label 
the righthand side.  Then, we eliminate the 
elements below the diagonal:

* (-1/2) + * (-1/2) +
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The resulting matrix is upper diagonal:

We can now solve for the unknowns by back 
substitution (where we can drop the transposes 
for the moment):

See the notes from Bartels, Beatty, and Barsky for 
more implementation details.

Back subsitution
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C2 interpolating spline

Once we’ve solved for the real Dis, we can plug 
them in to find our Bézier control points and draw 
the final spline:

Have we lost anything?

=> Yes, local control.
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With C2 interpolating splines, we have to modify 
the matrix for closed loops:

We can use a modified forward elimination to zero 
out everything below the diagonal, then back 
substitution to compute each D value.

See the notes from Bartels, Beatty, and Barsky for 
more implementation details.

Closing the loop
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