4. Affine transformations

Reading

Required:

- Watt, Section 1.1.

Further reading

- Foley, et al, Chapter 5.1-5.5.
- David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, $2^{\text {nd }}$ Ed., McGraw-Hill, New York, 1990, Chapter 2.

Geometric transformations

Geometric transformations will map points in one space to points in another: $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\boldsymbol{f}(x, y, z)$.

These tranformations can be very simple, such as scaling each coordinate, or complex, such as nonlinear twists and bends.

We'll focus on transformations that can be represented easily with matrix operations.

We'll start in 2D...

Representation

We can represent a point, $\mathbf{p}=(x, y)$, in the plane

- as a column vector
- as a row vector

Representation, cont.

Two-dimensional transformations

Here's all you get with a 2×2 transformation matrix

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

If \mathbf{p} is a column vector, M goes on the left:

$$
\begin{aligned}
\mathbf{p}^{\prime} & =M \mathbf{p} \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] } & =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
\end{aligned}
$$

If \mathbf{p} is a row vector, M^{T} goes on the right:

$$
\begin{aligned}
\mathbf{p}^{\prime} & =\mathbf{p} M^{T} \\
{\left[\begin{array}{ll}
x^{\prime} & y^{\prime}
\end{array}\right] } & =\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]
\end{aligned}
$$

We will use column vectors. matrix M :

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

So:

$$
\begin{aligned}
& x^{\prime}=a x+b y \\
& y^{\prime}=c x+d y
\end{aligned}
$$

We will develop some intimacy with the elements $a, b, c, d .$.

Identity

Suppose we choose $a=d=1, b=c=0$:

- Gives the identity matrix:

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

- Doesn't move the points at all

Scaling

Suppose we set $b=c=0$, but let a and d take on any positive value:

- Gives a scaling matrix:

$$
\left[\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right]
$$

- Provides differential (non-uniform) scaling in x and y :

$$
x^{\prime}=a x
$$

$$
y^{\prime}=d y
$$

Suppose we keep $b=c=0$, but let either a or d go negative.

Examples:
$\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$
$\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$

Now let's leave $a=d=1$ and experiment $b . \ldots$

The matrix

$$
\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right]
$$

gives:

$$
\begin{aligned}
x^{\prime} & =x+b y \\
y^{\prime} & =y
\end{aligned}
$$

Effect on unit square

Let's see how a general 2×2 transformation M affects the unit square:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{llll}
\mathbf{p} & \mathbf{q} & \mathbf{r} & \mathbf{s}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{p}^{\prime} & \mathbf{q}^{\prime} & \mathbf{r}^{\prime} & \mathbf{s}^{\prime}
\end{array}\right]} \\
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{llll}
0 & a & a+b & b \\
0 & c & c+d & d
\end{array}\right]}
\end{aligned}
$$

Effect on unit square, cont.

Observe:

- Origin invariant under M
- M can be determined just by knowing how the corners $(1,0)$ and $(0,1)$ are mapped
- a and d give x - and y-scaling
- b and c give x - and y-shearing

Rotation

From our observations of the effect on the unit square, it should be easy to write down a matrix for "rotation about the origin":

$\cdot\left[\begin{array}{l}1 \\ 0\end{array}\right] \rightarrow$
$\cdot\left[\begin{array}{l}0 \\ 1\end{array}\right] \rightarrow$

Linear transformations

The unit square observations also tell us the 2×2 matrix transformation implies that we are representing a point in a new coordinate system:

$$
\begin{aligned}
\mathbf{p}^{\prime} & =M \mathbf{p} \\
& =\left[\begin{array}{ll}
\mathbf{a} & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& =\left[\begin{array}{ll}
\mathbf{u} & \mathbf{v}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& =x \cdot \mathbf{u}+y \cdot \mathbf{v}
\end{aligned}
$$

where $\mathbf{u}=[a c]^{\top}$ and $\mathbf{v}=\left[\begin{array}{ll}b & d\end{array}\right]^{\top}$ are vectors that define a new basis for a linear space.

The transformation to this new basis (a.k.a., change of basis) is a linear transformation.

Thus,

Limitations of the 2×2 matrix

A 2×2 linear transformation matrix allows

- Scaling
- Rotation
- Reflection
- Shearing

Q: What important operation does that leave out?

Affine transformations

In order to incorporate the idea that both the basis and the origin can change, we augment the linear space \mathbf{u}, \mathbf{v} with an origin \mathbf{t}.

We call \mathbf{u}, \mathbf{v}, and \mathbf{t} (basis and origin) a frame for an affine space.

Then, we can represent a change of frame as:

$$
\mathbf{p}^{\prime}=x \cdot \mathbf{u}+y \cdot \mathbf{v}+\mathbf{t}
$$

This change of frame is also known as an affine transformation.

How do we write an affine transformation with matrices?

Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a third component to every point:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

And then transform with a 3×3 matrix:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=T(\mathbf{t})\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{llr}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

. . . gives translation!

Rotation about arbitrary points

Until now, we have only considered rotation about the origin.

With homogeneous coordinates, you can specify a rotation, θ, about any point $q=\left[q_{x} q_{y}\right]^{\top}$ with a matrix:

1. Translate \mathbf{q} to origin
2. Rotate
3. Translate back

Note: Transformation order is important!!

Points and vectors

From now on, we can represent points as have an additional coordinate of $w=1$.

Vectors have an additional coordinate of $w=0$.
Thus, a change of origin has no effect on vectors.

Q: What happens if we multiply a matrix by a vector?

These representations reflect some of the rules of affine operations ond points and vectors:

One useful combination of affine operations is:

Barycentric coordinates

A set of points can be used to create an affine frame. Consider a triangle $A B C$ and a point P :

We can form a frame with an origin C and the vectors from C to the other vertices:

$$
\mathbf{u}_{0}=\left(A-C \quad \mathbf{v}_{0}^{\mathbf{v}}=B-C \quad \widehat{\mathbf{t}} \neq C\right.
$$

We can then write P in this coordinate frame:

The coordinates (α, β, γ) are called the barycentric coordinates of P relative to A, B, and C.

we can compute the barycentric coordinates of P :

$$
\alpha A+\beta B+\gamma C=\left[\begin{array}{ccc}
A_{x} & B_{x} & C_{x} \\
A_{y} & B_{y} & C_{y} \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
\alpha \\
\beta \\
\gamma
\end{array}\right]=\left[\begin{array}{c}
P_{x} \\
P_{y} \\
1
\end{array}\right]\left[\begin{array}{c}
P_{\psi} \\
P_{y} \\
P_{z} \\
1
\end{array}\right]
$$

Simple matrix analysis gives the solution:

Computing the determinant of the denominator gives:

$$
B_{x} C_{y}-B_{y} C_{x}+A_{y} C_{x}-A_{x} C_{y}+A_{x} B_{y}-A_{y} B_{x}
$$

Cross products

Consider the cross-product of two vectors, \mathbf{u} and v. What is the geometric interpretation of this cross-product?

A cross-product can be computed as:

What happens when \mathbf{u} and \mathbf{v} lie in the $x-y$ plane? What is the area of the triangle they span?

$$
\frac{1}{2} \text { cros product }
$$

Barycentric coords from area ratios

Now, let's rearrange the equation from two slides ago:

$$
\begin{aligned}
B_{x} C_{y}-B_{y} C_{x}+ & A_{y} C_{x}-A_{x} C_{y}+A_{x} B_{y}-A_{y} B_{x}= \\
& \left(B_{x}-A_{x}\right)\left(C_{y}-A_{y}\right)-\left(B_{y}-A_{y}\right)\left(C_{x}-A_{x}\right)
\end{aligned}
$$

The determinant is then just the z-component of (BAA) $\times(C-A)$, which is two times the area of triangle $A B C$!

Thus, we find:

$\alpha=\frac{S A r e a(P B C)}{\text { Area }(\angle B C)}$
1

$$
\beta=\frac{\text { SArea }(A P C)}{\text { SArea(ABS) }} \quad \gamma=\frac{\text { SArea }(A B P)}{\text { SArea }(A B C)}
$$

Where SArea(RST) is the signed area of a triangle, which can be computed with crossproducts.

Affine and convex combinations

$$
A+B-A
$$

Note that we seem to have added points together, which we said was illegal, but as long as they have coefficients that sum to one, it's ok.

We call this an affine combination. More generally:

$$
P=\alpha_{1} A_{1}+\cdots+\alpha_{n} A_{n}
$$

is a proper affine combination if:

$$
\sum_{i=1}^{n} \alpha_{i}=1
$$

Note that if the α_{i} 's are all positive, the result is more specifically called a convex combination.

Q: Why is it called a convex combination?

,

Rotation in 3D

Rotation now has more possibilities in 3D:

Shearing in 3D

Shearing is also more complicated. Here is one example:

$$
x=x+c z
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & (b) & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

We call this a shear with respect to the $x-z$ plane.

Preservation of affine combinations

A transformation F is an affine transformation if it preserves affine combinations:

Properties of affine transformations

Here are some useful properties of affine transformations

$$
F\left(\alpha_{1} A_{1}+\cdots+\alpha_{n} A_{n}\right)=\alpha_{1} F\left(A_{1}\right)+\cdots+\alpha_{n} F\left(A_{n}\right)
$$

\checkmark Lines map to lines

- Parallel lines remain parallel
- Midpoints map to midpoints (in fact, ratios are always preserved)
 projection is an affine transformation.

We'll use this fact later...

Summary

What to take away from this lecture:

- All the names in boldface.
- How points and transformations are represented.
- What all the elements of a 2×2 transformation matrix do and how these generalize to 3×3 transformations.
- What homogeneous coordinates are and how they work for affine transformations.
- How to concatenate transformations.
- The rules for combining points and vectors
- The mathematical properties of affine transformations.

