Homework \#1
 Sampling theory, image processing, affine transformations

Assigned: Sept 16, 2004
Due: Sept 28, 2004
(at the beginning of class)

Directions: Please provide short written answers to the following questions. Feel free to talk over the problems in general terms with classmates, but please answer the questions on your own.

1. Fourier transforms and signal reconstruction 40 Points

In this problem, you will take a closer look at convolution, Fourier transforms and signal reconstruction. We begin with a couple of preliminaries.
i) Recall that the box function $\operatorname{II}(x)$ is defined as:

$$
\operatorname{II}(x)= \begin{cases}1 & |x|<1 / 2 \\ 1 / 2 & |x|=1 / 2 \\ 0 & |x|>1 / 2\end{cases}
$$

and its Fourier transform is $\operatorname{sinc}(s)=\sin (\pi \mathrm{s}) / \pi \mathrm{s}$. Likewise, the Fourier transform of $\operatorname{sinc}(x)$ is $\mathrm{II}(s)$. More generally, for some constant frequency ω_{0}, the Fourier transform of $\operatorname{II}\left(\omega_{0} x\right)$ is $\frac{1}{\omega_{0}} \operatorname{sinc}\left(\frac{1}{\omega_{0}} s\right)$. Also, we can show that $\operatorname{sinc}(0)=1$. This transform pair is depicted graphically in the lecture notes.
ii) The dirac delta function δ (x) can be defined as:

$$
\begin{aligned}
& \delta(\mathrm{x})=0, \text { for all } \mathrm{x} \neq 0 \\
& \delta(0)=\infty
\end{aligned}
$$

and with the property that $\int_{-\infty}^{\infty} \delta(x) d x=1$
The Fourier transform of

$$
\cos \left(2 \pi f_{0} x\right)
$$

is

$$
\frac{1}{2} \delta\left(x-f_{0}\right)+\frac{1}{2} \delta\left(x+f_{0}\right)
$$

and vice-versa. The constant f_{0} represents the frequency of the cosine function. This transform pair is also depicted graphically in the lecture notes.
iii) If the Fourier transform of $\mathrm{h}(\mathrm{x})$ is $\mathrm{H}(\mathrm{s})$, then the Fourier transform of $\mathrm{k} \cdot \mathrm{h}(\mathrm{x})$ is $\mathrm{k} \cdot \mathrm{H}(\mathrm{s})$.
iv) The hat function, $\Lambda(x)$, is defined as:

$$
\Lambda(x)=\left\{\begin{array}{cc}
1-|x| & |x|<1 \\
0 & |x|>1
\end{array}\right.
$$

We sample a function by multiplying with the comb or shah function:

$$
\hat{f}(x)=f(x) \operatorname{III}(x)=\sum_{i=-\infty}^{i=\infty} f(i) \delta(x-i)
$$

We reconstruct by convolving with a reconstruction filter $r(x)$:

$$
\tilde{f}(x)=r(x) * \hat{f}(x)=\sum_{i=-\infty}^{i=\infty} f(i) r(x-i)
$$

Problem 1 (cont'd.)

Now we get to the problems you need to solve. (Hint: There is an easy way and a hard way to do these problems. The easy way is to use various simple properties of the Fourier transform.)
a) Convolution:

Given a function $f(x)=\cos (2 \pi x)+\cos (8 \pi x)$.
i) What is its Fourier transform (in equation form)? Plot the magnitude of the Fourier transform, with properly labeled axes.
ii) Given a convolution filter $h(x)=\operatorname{sinc}(3 x)$, what is the function that results from convolving $f(x)$ with $h(x)$?
b) Sampling and Reconstruction:

Given the same function $f(x)=\cos (2 \pi x)+\cos (8 \pi x)$.
i) Plot this function.
ii) If we sample this signal at points $0,1 / 8,2 / 8,3 / 8, \ldots$, and then reconstruct it with a linear reconstruction kernel, $\mathrm{h}(\mathrm{x})=\Lambda(8 \mathrm{x})$, what is the plot of the reconstructed signal? Is this signal the same as the original signal $f(x)$? Discuss why or why not.

2. Image processing

 25 pointsDescribe the effect of each of the following filters. In addition, indicate which filter will cause the most blurring and which, when convolved with a solid (positive) intensity image, will produce the brightest image and which will produce the darkest image. Justify your answers.

0.1	0.1	0.1
0.1	0.1	0.1
0.1	0.1	0.1

0	0	1
0	-2	0
1	0	0

0	0.2	0
0.2	0.4	0.2
0	0.2	0

0	-1	0
0	3	0
0	-1	0

3. Affine Transformations 35 points

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{llll}
1 & 0 & 0 & \overline{6} \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \mathrm{B}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
\hline
\end{array}\right. \\
& \mathrm{C}=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \mathrm{D}=\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \mathrm{E}=\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \mathrm{F}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \mathrm{G}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \mathrm{H}=\stackrel{\left.\left.\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\hline
\end{array}\right] .\right] .}{ } \\
& \mathrm{I}=\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & .6 & .8 & 0 \\
0 & -.8 & .6 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

a) As discussed in class, any three-dimensional affine transformation can be represented with a 4×4 matrix. Match each of the matrices above to exactly one of the following transformations (not all blanks will be filled):
\qquad Differential (Non-Uniform) Scaling
\qquad Reflection
\qquad Rotation about the z-axis with non-uniform scaling
\qquad Rotation about the y-axis with non-uniform scaling
\qquad Translation
\qquad Rotation about the x-axis
\qquad Rotation about the y-axis
\qquad Rotation about the z-axis
\qquad Shearing along z with respect to the $x-y$ plane ($\mathrm{z}=0$ plane unchanged by shear)
\qquad Shearing along x with respect to the $y-z$ plane ($x=0$ plane unchanged by shear)
\qquad Rotation about the x -axis and translation
\qquad Uniform scaling
\qquad Reflection with uniform scaling

Problem 3 (cont'd.)

b) Consider a line that passes through a point $\mathbf{p}=\left(p_{x}, p_{y}, p_{z}\right)$ in the direction $\mathbf{v}=(\cos \alpha, 0, \sin \alpha)$. Write out the product of matrices that would perform a rotation by θ about this line. You should not multiply these matrices out, but you do need to write out all of the elements in these matrices.

