
1

UTCS
CS352, S07

Lecture 17 1

Lecture 17: Virtual Memory II

• Last Lecture:
– Introduction to virtual memory

• Today
– Review and continue virtual memory discussion

UTCS
CS352, S07

Lecture 17 2

Goals of virtual memory

• Make it appear as if each process has:
– Its own private memory
– Nearly infinite-sized memory

2

UTCS
CS352, S07

Lecture 17 3

A Load to Virtual Memory

• Translate from virtual space to physical space
– VA ⇒ PA
– May need to go to disk

CPU Cache DRAM
1 GB

LW R1,0(R2)

Virtual Addr.

64 bits

30 bits

Tr
an

sla
te

Physical Addr.

48 bits

UTCS
CS352, S07

Lecture 17 4

Virtual Addresses Span Memory+Disk

• Mappings changed dynamically by O/S
– In response to users data accesses
– OS manages it, triggered by hardware

Virtual Addresses
Physical Addresses

Disk

3

UTCS
CS352, S07

Lecture 17 5

A Load to Virtual Memory

• Both programs can use the same set of addresses!
– Change translation tables to point same VA to different PA for

different programs

CPU Cache DRAM
1 GB

LW R1,0(R2)

Virtual Addr.

64 bits

30 bits

Tr
an

sla
te

Physical Addr.

48 bits

Process 1

Process 2

Tr
an

sla
te

Tr
an

sla
te

UTCS
CS352, S07

Lecture 17 6

Virtual Address Translation

• Main Memory = 1 GB
• Page Size = 4KB
• VPN = 42 bits
• PPN = 18 bits

Virtual Page Number (VPN) Page Offset

Physical Page Number (PPN) Page Offset

Translation
Table

0

11

1229

63 0

11

12

• Translation table
– aka “Page Table”
– An “array of pointers”

4

UTCS
CS352, S07

Lecture 17 7

Page Table Construction

• Page table size
– (14 + 1) * 252 = enormous

• Where to put the page table?
- we’ll return to this question in a moment

valid Physical Page Number
Page Table Register

+

VPN offset

PPN offset

UTCS
CS352, S07

Lecture 17 8

valid Physical Page Number

What else can we put in this table?

• What if we want a page to be read-only?
• What if we want a page to only hold instructions?
• What if we want to keep track of “dirty” pages?
• What if we want to track frequently used pages?

5

UTCS
CS352, S07

Lecture 17 9

Page Frame Management

• OS maintains
– page table for each user process
– page frame table
– free page list

• pages evicted when number of free
pages falls below a low water mark.

– pages evicted using a replacement policy
• random, FIFO, LRU, clock

– if M-bit is clear, need not copy the page
back to disk

Page Frame Table

Link R M State

Free

Proc 1

UTCS
CS352, S07

Lecture 17 10

How much memory does each process need?

• Need to keep a process’
working set in memory or
thrashing will occur

• Find working set size by
increasing page frame
allocation until PF/s falls
below limit

• Swap out whole process if
insufficient page frames
for working set

W

X

Y

Z

X

Y

Z

W

Y

Z

W

X

Reference four pages in
sequence, mapped to three page
frames

6

UTCS
CS352, S07

Lecture 17 11

Page table organization

UTCS
CS352, S07

Lecture 17 12

Page Table Organization

• Flat page table has size
proportional to size of
virtual address space
– can be very large for a

machine with 64-bit
addresses and several
processes

• Three solutions
– page the page table (fixed

mapping)
• what really needs to

be locked down?
– multi-level page table

(lower levels paged - Tree)
– inverted page table (hash

table)

PTP

2n-o

7

UTCS
CS352, S07

Lecture 17 13

Multi-Level Page Table

PTP

Dir1 Dir2 Page offset

Directory
Directory

Page
Directory

Page
Table

e.g., 42-bit VA with 12-bit offset
10-bits for each of three fields
1024 4-byte entries in each table (one page)

Virtual Address

UTCS
CS352, S07

Lecture 17 14

Inverted Page Tables

• Only store table entries for
pages in physical memory

• Miss in page table implies page
is on disk

• Usual hash-table rules apply:
– Hash table should not be full
– Rule of thumb: at least twice

as many hash table entries as
there are pages in memory.

Virtual Address
Page Offset

Hash Page Frame S

=

Frame Offset

OK

8

UTCS
CS352, S07

Lecture 17 15

Summary so far

• Virtual memory provides
– Illusion of private memory system for each process
– Protection
– Relocation in memory system
– Demand paging

• But – page tables can be large
– Motivates: paging page tables, multi-level tables, inverted

page tables

• Next:
– How can we improve performance of page tables?

UTCS
CS352, S07

Lecture 17 16

How Long does it Take to Access VM?

• Problems
– Multiple memory and potentially disk accesses
– Can we use cache for the page-table access? How?

Issue Load Walk page
table

Translate
VA⇒PA

Fetch data
using PA

Best Case

Worst Case

Issue Load Use dataWalk page
table

Fetch PTE from disk Fetch data page from disk Install new page,
update page table Use data

9

UTCS
CS352, S07

Lecture 17 17

Use a cache: Translation Lookaside Buffers

• Store most frequently
used translations in small,
fast memory (cache for
page table entries)

• Valid, Writeable,
Referenced, Modified
– Access protection
– Replacement strategies

• Size – often 128 entries
• Highly associative

(sometimes fully assoc.)

PID VPN Offset

TLB

V W R M VPN PPN

PPN Offset Page = VPN
Frame = PPN

UTCS
CS352, S07

Lecture 17 18

“Rare” Behavior in VM system

• TLB Miss
– Translation is not in TLB – but everything could be in

memory
– Two approaches

• Hardware state machine walks the page table
– fast but inflexible

• Exception raised and software walks the page table
• Page Fault

– Entry not in TLB and target page not in main memory
• Worst case

– Page fault and page table and target page

10

UTCS
CS352, S07

Lecture 17 19

Reducing TLB misses

• Same type of optimizations as for cache
– Associativity (many TLBs are fully associative)
– Capacity – TLBs tend to be 32-128 entries

• Adjust page size
– Small pages

• Reduces internal fragmentation
• Speeds page movement to/from disk

– Large pages
• Can cover more physical memory with same number of

TLB entries
– Solution – typically have a variable page size

• Select by OS, 4KB-256KB (superpages)
• AMD “Barcelona” supports 1 GB pages!

UTCS
CS352, S07

Lecture 17 20

Combining virtual memory
with conventional caching

11

UTCS
CS352, S07

Lecture 17 21

Virtual Memory + Caching

• Conflicting demands:
– Convenience of flexible memory management (translation)
– Performance of memory hierarchy (caching)

• Requires cooperation of O/S
– Data in cache implies that data is in main memory

• Combine VM and Caching
– Where do we put the Cache and the TLB????

UTCS
CS352, S07

Lecture 17 22

Physically Addressed Cache

• Translate first from VA ⇒ PA
• Access cache with PA

• Problems?

CPU Cache

LW R1,0(R2)

Virtual Addr.

64 bits

Physical Addr.

48 bits

 TLB DRAM

12

UTCS
CS352, S07

Lecture 17 23

Virtually Addressed Cache

• Access cache first
• Only translate if going to main memory

• Problems?

CPU Cache

LW R1,0(R2)

Virtual Addr.

32 bits
Physical Addr.

26 bits

 TLB DRAM

UTCS
CS352, S07

Lecture 17 24

Virtually addressed caches give aliasing problems

• Can occur when switching among multiple address
spaces

• Synonym aliasing
– Different VAs point to the same PA
– Occurs when data shared among multiple address spaces
– One solution – always translate before going to the cache

• Homonym aliasing
– Same VA point to different PAs
– Occurs on context switching
– Two solutions:

• Flush TLB on process switch/system call
• TLB includes process ID

13

UTCS
CS352, S07

Lecture 17 25

Best of Both Worlds:

Virtually addressed, Physically Tagged
• Parallel Access
• Eliminate synonym problem

CPU

Cache

LW R1,0(R2)

Virtual Addr.

64 bits

Physical Addr.

48 bits

 TLB

DRAM

UTCS
CS352, S07

Lecture 17 26

Virtual Index, Physical Tag

14

UTCS
CS352, S07

Lecture 17 27

Other Aliasing Solutions

• Note virtually indexed/physically tagged put
constraints on cache capacity, page size, etc.

• Other solutions:
– 21264: 8KB pages, 64KB i-cache, 2-way set associative

• Aliases could reside in 8 different places in cache
• On cache miss, invalidate any possible aliases in cache

– Intel Pentium 4
• Virtually indexed/virtually tagged cache
• Check for TLB misses off line (roll back if necessary)

UTCS
CS352, S07

Lecture 17 28

Virtual Memory Summary

• Relocation, Protection
• Apparent memory size >> DRAM capacity

• Translation
– From large VA space to smaller PA space
– Page tables hold translations

• Provides
– Separation of memory management from user programs
– Ability to use DRAM as cache for disk
– Fast translation using Translation Lookaside Buffer (TLB)

• Cache for page table
– Speed - translate in parallel with cache lookup

15

UTCS
CS352, S07

Lecture 17 29

Recap: caches and virtual memory

• Two basic ideas:
– Indirection (data = memory[table[address]])
– Caching

• Caches
– Uses caching idea

• Virtual memory
– Uses indirection to convert virtual->physical address
– Uses caching to store active pages in DRAM,

inactive pages on disk
– Uses caching to store active page translations in TLB

UTCS
CS352, S07

Lecture 17 30

Virtual memory “cache” policies

• Write back
• Fully associative
• Clever replacement policies, implemented in SW

