
1

UTCS
CS352, S07

Lecture 14 1

Lecture 14: Caching

• Last time:
– Branch prediction
– Issuing multiple instructions in each cycle

• Today:
– What part of the pipeline have we been glossing over?

• Memory!!
– Very important to overall machine performance.

UTCS
CS352, S07

Lecture 14 2

Memory System Overview

• Memory Hierarchies
– Latency/Bandwidth/Locality
– Caches

• Principles - why does it
work

• Cache organization
• Cache performance
• Types of misses (the 3 Cs)

– Main memory organization
• DRAM vs. SRAM
• Bank organization
• Tracking multiple

references
– Trends in memory system

design

• Logical Organization
– Name spaces
– Protection and sharing
– Resource management

• virtual memory, paging,
and swapping

– Segmentation
– Capability-based

addressing

2

UTCS
CS352, S07

Lecture 14 3

The Memory Bottleneck

• Typical CPU clock rate
– 3 GHz (0.33 ns cycle time)

• Typical DRAM access time
– 30ns (about 100 cycles)

• Typical main memory access
– 70ns (210 cycles)

• DRAM (30), precharge
(10), chip crossings (15),
overhead (15).

• Our pipeline designs assume 1
cycle access

• How many memory accesses
made by typical instruction?
– 1 instruction word
– 0.3 data words

• This problem gets worse
– CPUs get faster
– Memories get bigger

• Memory delay is mostly
communication time
– reading/writing a bit is

fast
– it takes time to

• select the right bit
• route the data

to/from the bit
• Big memories are slow
• Small memories can be

made fast

UTCS
CS352, S07

Lecture 14 4

Cache Memory

• Small fast memory + big
slow memory

• Looks like a big fast
memory

MC

Small
Fast

MM

Big
Slow

Big
Fast

3

UTCS
CS352, S07

Lecture 14 5

Bookshelf analogy

• Lots of books on shelves
• A few books on my desk
• One book that I’m reading

• Shelves = main memory
• Desk = cache

• Book = block
• Page in book = memory location

UTCS
CS352, S07

Lecture 14 6

The Memory Hierarchy

Registers

Level 1 Cache

1 cyc 3-10 words/cycle compiler managed
< 1KB

1-3cy 1-2 words/cycle hardware managed
32KB -1MB

5-10cy 1 word/cycle hardware managed
1MB - 4MB

30-100cy 0.5 words/cycle OS managed
64MB - 4GB

106-107cy 0.01 words/cycle OS managed
4GB+

Level 2 Cache

CPU
Chip

DRAM

Chips

Mechanical Disk

Tape

Latency Bandwidth

4

UTCS
CS352, S07

Lecture 14 7

Where Does the Memory Hierarchy Fit In?

I-Mem

A DO

Reg
File

RW

D-Mem

A DO

DI

IR

IR

B

A
C

D

IR IR

E

+4 PC PC

UTCS
CS352, S07

Lecture 14 8

Typical Cache Organization

Alpha 21264: 64KB I-Cache
 64KB D-Cache
 > 1MB L2 Cache

Processor
Core

I-
C

ac
he

D-Cache

L2 Bus Interface

L2 Cache

MAIN MEMORY

5

UTCS
CS352, S07

Lecture 14 9

Locality of Reference

• Spatial Locality
– likely to reference data

near recent references

• Temporal Locality
– likely to reference the

same data that was
referenced recently

P

Location

Code

Stack

Array P

t

UTCS
CS352, S07

Lecture 14 10

Program Behavior

• Locality depends on type of program
• Some programs ‘behave’ well

– small loop operating on data on stack
• Some programs don’t

– frequent calls to nearly random subroutines
– traversal of large, sparse data set

• essentially random data references with no reuse
• Most programs exhibit some degree of locality

6

UTCS
CS352, S07

Lecture 14 11

Example

MC

Small
Fast

MM

Big
Slow

MM

Big
Slow

What is the average memory access time?

• 70% of references hit in cache
• Cache hits take one cycle
• Main memory references take 25 cycles

AMAT = LatencyHit + P(miss)*LatencyMiss

UTCS
CS352, S07

Lecture 14 12

Impact of Hit Rate

Average Access Time

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

Hit Rate

7

UTCS
CS352, S07

Lecture 14 13

Two kinds of “fast & small” memory

• Programmer manages it manually
– Sometimes called a “scratchpad” memory
– CELL processor uses this approach

• Hardware manages it automatically
– Invisible to programmer
– Referred to as a “cache”
– Most CPUs use this approach
– Easy for programmers; Hard for hardware

UTCS
CS352, S07

Lecture 14 14

How does hardware keep track of what’s in
the fast memory (cache)?

• How does it know what’s in the cache ‘now’?
• How does it decide what to add to the cache?
• How does it decide what to remove from the

cache?
• How does it keep the cache consistent with the

off-chip memory?

8

UTCS
CS352, S07

Lecture 14 15

Cache Organization

27

Address

15
42
86

95
11
75
33

Data

Valid
bits

90
12
74
35

99
13
73
31

96
14
72
37

• Where does a block get placed?
• How do we find it?
• Which one do we replace when a new one is brought in?
• What happens on a write?

UTCS
CS352, S07

Lecture 14 16

Cache Definitions

• Cache block (= cache line)

• Index
• Offset

0x0000
0x0010

0x0 0x4 0x8 0xc

0x0020

0x00f0

9

UTCS
CS352, S07

Lecture 14 17

Where Does a Block Go in the Cache?

10 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3110 2 3 4 5 6 7

• Where do we put block 12?

Cache

Main Memory

• Word = 4 bytes
• Block = 1 word

UTCS
CS352, S07

Lecture 14 18

Direct Mapped

10 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3110 2 3 4 5 6 7

• Each block mapped to exactly 1 cache location

Cache location = (block address) MOD (# blocks in cache)

10

UTCS
CS352, S07

Lecture 14 19

Fully Associative

10 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3110 2 3 4 5 6 7

• Each block mapped to any cache location

Cache location = any

UTCS
CS352, S07

Lecture 14 20

Set Associative

10 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3110 2 3 4 5 6 7

• Each block mapped to subset of cache locations

Set selection = (block address) MOD (# sets in cache)

0Set 1 2 3
2-way set associative = 2 blocks in set
This example: 4 sets

11

UTCS
CS352, S07

Lecture 14 21

Block Placement

• Mapping function from Big Memory
to Small memory

• On block-by-block basis
– Direct Mapped: 1 place
– Fully Associative: Anywhere
– Set Associative: Subset of cache

• Use address to do mapping and
lookup

Cache MM

Main Memory

UTCS
CS352, S07

Lecture 14 22

Taking advantage of Spatial Locality

• Instead of each block in cache being just 1 word,
what if we made it 4 words?

• When we get our 1 word instruction or 1 word of
data from memory to put in the cache, get the
next 3 as well, because they are likely to be used
soon!

• Need to add a way to choose which of the 4 words
in the block we want when we go to cache… called
block offset.

