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Lecture 14: Caching

• Last time:
– Branch prediction
– Issuing multiple instructions in each cycle

• Today:
– What part of the pipeline have we been glossing over?

• Memory!!
– Very important to overall machine performance.
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Memory System Overview

• Memory Hierarchies
– Latency/Bandwidth/Locality
– Caches

• Principles - why does it
work

• Cache organization
• Cache performance
• Types of misses (the 3 Cs)

– Main memory organization
• DRAM vs. SRAM
• Bank organization
• Tracking multiple

references
– Trends in memory system

design

• Logical Organization
– Name spaces
– Protection and sharing
– Resource management

• virtual memory, paging,
and swapping

– Segmentation
– Capability-based

addressing
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The Memory Bottleneck

• Typical CPU clock rate
– 3 GHz (0.33 ns cycle time)

• Typical DRAM access time
– 30ns (about 100 cycles)

• Typical main memory access
– 70ns (210 cycles)

• DRAM (30), precharge
(10), chip crossings (15),
overhead (15).

• Our pipeline designs assume 1
cycle access

• How many memory accesses
made by typical instruction?
– 1 instruction word
– 0.3 data words

• This problem gets worse
– CPUs get faster
– Memories get bigger

• Memory delay is mostly
communication time
– reading/writing a bit is

fast
– it takes time to

• select the right bit
• route the data

to/from the bit
• Big memories are slow
• Small memories can be

made fast
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Cache Memory

• Small fast memory + big
slow memory

• Looks like a big fast
memory

MC

Small
Fast

MM

Big
Slow

Big
Fast
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Bookshelf analogy

• Lots of books on shelves
• A few books on my desk
• One book that I’m reading

• Shelves = main memory
• Desk = cache

• Book = block
• Page in book = memory location
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The Memory Hierarchy

Registers

Level 1 Cache

1 cyc 3-10 words/cycle compiler managed
< 1KB

1-3cy 1-2 words/cycle hardware managed
32KB -1MB

5-10cy 1 word/cycle hardware managed
1MB - 4MB

30-100cy 0.5 words/cycle OS managed
64MB - 4GB

106-107cy 0.01 words/cycle OS managed
4GB+

Level 2 Cache

CPU
Chip

DRAM

Chips

Mechanical Disk

Tape

Latency Bandwidth
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Where Does the Memory Hierarchy Fit In?

I-Mem

A DO

Reg
File

RW

D-Mem

A DO

DI

IR

IR

B

A
C

D

IR IR

E

+4 PC PC
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Typical Cache Organization

Alpha 21264: 64KB I-Cache
      64KB D-Cache
      > 1MB L2 Cache

Processor
Core

I-
C

ac
he

D-Cache

L2 Bus Interface

L2 Cache

MAIN MEMORY
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Locality of Reference

• Spatial Locality
– likely to reference data

near recent references

• Temporal Locality
– likely to reference the

same data that was
referenced recently

P

Location

Code

Stack

Array P

t
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Program Behavior

• Locality depends on type of program
• Some programs ‘behave’ well

– small loop operating on data on stack
• Some programs don’t

– frequent calls to nearly random subroutines
– traversal of large, sparse data set

• essentially random data references with no reuse
• Most programs exhibit some degree of locality
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Example

MC

Small
Fast

MM

Big
Slow

MM

Big
Slow

What is the average memory access time?

• 70% of references hit in cache
• Cache hits take one cycle
• Main memory references take 25 cycles

AMAT = LatencyHit + P(miss)*LatencyMiss

UTCS
CS352, S07

Lecture 14          12

Impact of Hit Rate

Average Access Time
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Two kinds of “fast & small” memory

• Programmer manages it manually
– Sometimes called a “scratchpad” memory
– CELL processor uses this approach

• Hardware manages it automatically
– Invisible to programmer
– Referred to as a “cache”
– Most CPUs use this approach
– Easy for programmers; Hard for hardware
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How does hardware keep track of what’s in
the fast memory (cache)?

• How does it know what’s in the cache ‘now’?
• How does it decide what to add to the cache?
• How does it decide what to remove from the

cache?
• How does it keep the cache consistent with the

off-chip memory?
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Cache Organization

27

Address

15
42
86

95
11
75
33

Data

Valid
bits

90
12
74
35

99
13
73
31

96
14
72
37

• Where does a block get placed?
• How do we find it?
• Which one do we replace when a new one is brought in?
• What happens on a write?
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Cache Definitions

• Cache block (= cache line)

• Index
• Offset

0x0000
0x0010

0x0 0x4 0x8 0xc

0x0020

0x00f0
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Where Does a Block Go in the Cache?

10 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3110 2 3 4 5 6 7

• Where do we put block 12?

Cache

Main Memory

• Word = 4 bytes
• Block = 1 word
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Direct Mapped

10 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3110 2 3 4 5 6 7

• Each block mapped to exactly 1 cache location

Cache location = (block address) MOD (# blocks in cache)
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Fully Associative

10 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3110 2 3 4 5 6 7

• Each block mapped to any cache location

Cache location = any
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Set Associative

10 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3110 2 3 4 5 6 7

• Each block mapped to subset of cache locations

Set selection = (block address) MOD (# sets in cache)

0Set 1 2 3
2-way set associative = 2 blocks in set
This example: 4 sets
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Block Placement

• Mapping function from Big Memory
to Small memory

• On block-by-block basis
– Direct Mapped: 1 place
– Fully Associative: Anywhere
– Set Associative: Subset of cache

• Use address to do mapping and
lookup

Cache MM

Main Memory
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Taking advantage of Spatial Locality

• Instead of each block in cache being just 1 word,
what if we made it 4 words?

• When we get our 1 word instruction or 1 word of
data from memory to put in the cache, get the
next 3 as well, because they are likely to be used
soon!

• Need to add a way to choose which of the 4 words
in the block we want when we go to cache…  called
block offset.


