
1

UTCS
CS352, S07

Lecture 12 1

Lecture 12: Pipelining Hazards

• Administrative
– HW #3 due
– HW #4 handed out, due Thursday after spring break
– Exam #1 handed out

• Review pipelining
• 5 stages
• Data Hazards

– Fixing them with forwarding
• Memory Hazards

– Fixing them with stalls
• Today

– Control hazards
• Branch delay slot, branch prediction

– Branch prediction

UTCS
CS352, S07

Lecture 12 2

Split machine into 5 pipeline stages

Add

Address

Instruction
memory

Read
register 1
Read
register 2

Write
register
Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Add
result

ALU ALU
result

Zero

Shift
left 2

Sign
extend

PC

4

ID/EXIF/ID EX/MEM MEM/WB

16 32

It’s like attaching a note to the laundry basket used for a particular load

2

UTCS
CS352, S07

Lecture 12 3

Several instructions in progress at once

Add

Address

Instruction
memory

Read
register 1
Read
register 2

Write
register
Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Add
result

ALU ALU
result

Zero

Shift
left 2

Sign
extend

PC

4

ID/EXIF/ID EX/MEM MEM/WB

16 32

UTCS
CS352, S07

Lecture 12 4

Control signals are carried with each instruction

WB

M

EX

WB

M WB

PCSrc

MemRead

Add

Address

Instruction
memory

Read
register 1
Read
register 2

Instruction
[15–0]

Instruction
[20–16]

Instruction
[15–11]

Write
register
Write
data

Read
data 1

Read
data 2

Registers Address

Write
data

Read
data

Data
memory

Add Add
result

ALU ALU
result

Zero

Shift
left 2

Sign
extend

PC

4

ID/EX

IF/ID

EX/MEM

MEM/WB

16 632 ALU
control

RegDst

ALUOp

ALUSrc

Branch

Control

LW R1, 4(R2)

3

UTCS
CS352, S07

Lecture 12 5

Three kinds of Pipeline Hazards

• Data hazards
– an instruction uses the result of a previous instruction (RAW)

ADD R1, R2, R3 or SW R1, 3(R2)
ADD R4, R1, R5 LW R3, 3(R2)

• Control hazards
– the location of an instruction depends on a previous instruction

JMP LOOP
…

LOOP: ADD R1, R2, R3
• Structural hazards

– two instructions need access to the same resource
• e.g., single memory shared for instruction fetch and

load/store

UTCS
CS352, S07

Lecture 12 6

Bypassing: send data directly to where it’s needed

0 M

WB

WB

Data
memory

Instruction
memory

M
u
x

M
u
x

M
u
x

M
u
x

ALU

ID/EX

EX/MEM

MEM/WB

Forwarding
unit

PC

Control

EX

M

WB

IF/ID

M
u
x

Hazard
detection

unit

ID/EX.MemRead

IF/ID.RegisterRs
IF/ID.RegisterRt
IF/ID.RegisterRt
IF/ID.RegisterRd

ID/EX.RegisterRt

Registers

Rt

Rd

Rs
Rt

ADD R1, R2, R3
ADD R4, R1, R5
SUB R5, R1, R6
XOR R7, R8, R1

4

UTCS
CS352, S07

Lecture 12 7

Memory hazards must stall:
The “Hazard detection unit” inserts a NOP

0 M

WB

WB

Data
memory

Instruction
memory

M
u
x

M
u
x

M
u
x

M
u
x

ALU

ID/EX

EX/MEM

MEM/WB

Forwarding
unit

PC

Control

EX

M

WB

IF/ID

M
u
x

Hazard
detection

unit

ID/EX.MemRead

IF/ID.RegisterRs
IF/ID.RegisterRt
IF/ID.RegisterRt
IF/ID.RegisterRd

ID/EX.RegisterRt

Registers

Rt

Rd

Rs
RtLW R1, 0(R2)

ADD R4, R1, R5

UTCS
CS352, S07

Lecture 12 8

Control Hazards

5

UTCS
CS352, S07

Lecture 12 9

Control Hazard: Branch on condition

0 M

WB

WB

Data
memory

Instruction
memory

M
u
x

M
u
x

M
u
x

M
u
x

ALU

ID/EX

EX/MEM

MEM/WB

Forwarding
unit

PC

Control

EX

M

WB

IF/ID

M
u
x

Hazard
detection

unit

ID/EX.MemRead

IF/ID.RegisterRs
IF/ID.RegisterRt
IF/ID.RegisterRt
IF/ID.RegisterRd

ID/EX.RegisterRt

Registers

Rt

Rd

Rs
RtBGE R2, R3, ZZZ

...
XX: ADD ...

At what stage do we know if conditional is true?
What are the options for dealing with this?

UTCS
CS352, S07

Lecture 12 10

Move branch logic to ID stage

Control

Hazard
detection

unit

+

4

PC
Instruction
memory

Sign
extend

Registers
=

+

Fowarding
unit

ALU

ID/EX

EX/MEM

EX/MEM

WB

M

EX

Shift
left 2

IF.Flush

IF/ID

M
u
x

M
u
x

M
u
x

M
u
x

M
u
x

M
u
x

Data
memory

WB

WBM

0

How many cycles of stall now?

BGE R2, R3, ZZZ
...

XX: ADD ...

6

UTCS
CS352, S07

Lecture 12 11

Branch Delay Slots

• Since we need to have a dead
cycle anyway, let’s put a
useful instruction there

• Advantage:
– Do more useful work
– Potentially get rid of all stalls

• Disadvantage:
– Exposes microarchitecture to

ISA
– Deeper pipelines require more

delay slots

ADD R2,R3,R4
BNEZ R5,_loop
NOP

BNEZ R5,_loop
ADD R2,R3,R4

UTCS
CS352, S07

Lecture 12 12

Speculating for control hazards

• Conservatively, the pipeline
waits until the branch
target is computed before
fetching the next
instruction.

• Alternatively, we can
speculate which direction
and to what address the
branch will go.

• Need to confirm
speculation and back up
later.

F R X M W

F R X M W

F R X M W

F R X M W

F R X M W

F R X M WF

7

UTCS
CS352, S07

Lecture 12 13

How can we predict branch direction?

• Past history of this branch
– Last time
– Last two time (why is this useful?)

• Past history of last several branches
– Why is this useful?

for (i=0; i<1000; i++) {
for (j=0; j<1000; j++) {

if (j == 0) {
foo;

}
bar;

}
}

UTCS
CS352, S07

Lecture 12 14

Control Hazards Summary

• Three approaches
– Stall until new PC is known
– Speculate that branch goes a particular way

• If guess is right, great!
• If guess is wrong, kill off speculated work

– Delay slot

• Delay slot is only approach visible to programmer!
– Unfortunately, MIPS picked this approach!

8

UTCS
CS352, S07

Lecture 12 15

Exceptions – implicit conditional branches

• Examples of exceptions
– Overflow of result
– Page fault on load

• On an exception, branch to some address
• But – no explicit branch instruction!
• Architectural issues:

– What exceptions are supported?
– Are they “precise”?

• i.e. behavior is as-if there was no pipelining
– Adds significant complexity to implementation!

UTCS
CS352, S07

Lecture 12 16

Denormalized number

31 30-23 22-0

exponentsign mantissa

0 non-zero

Often, the floating-point hardware cannot directly handle these.
The floating-point unit generates an exception.

9

UTCS
CS352, S07

Lecture 12 17

Exception example

Control

Hazard
detection

unit

+

4

PC
Instruction
memory

Sign
extend

Registers
=

+

Fowarding
unit

ALU

ID/EX

EX/MEM

EX/MEM

WB

M

EX

Shift
left 2

IF.Flush

IF/ID

M
u
x

M
u
x

M
u
x

M
u
x

M
u
x

M
u
x

Data
memory

WB

WBM

0

ADD.S F1, F2, F3
MUL.S F4, F1, F5 What if F2 is a denormalized number?

UTCS
CS352, S07

Lecture 12 18

R4000 Pipeline

Instruction Memory Reg RegData Memory

IF IS RF EX DFDS TC WB

(I$ start) (ALU) (D$ start) (D$ finish)(decode/opfetch)(I$ finish) (tag check) (write back)

• How long is load delay?
• How long is branch delay?
• How many comparators are needed to implement the

forwarding decisions?
• What instruction sequences will still cause stalls?

10

UTCS
CS352, S07

Lecture 12 19

How Do We Speed up the Pipeline?

• Pipeline too long ⇒ more ALUs (exploit ILP)
• WAR/WAW hazards ⇒ register renaming

• Undetermined dependencies at compile time ⇒
dynamic scheduling
– Object code compatibility
– Simplify compiler

• Too many branches ⇒ better branch prediction
– Or use predication to eliminate branches

• Unknown dependencies (control/data) ⇒ speculate
• Explicitly parallel architectures (VLIW / EPIC)

ADD R1,R2,R3
SUB R1,R4,R5

ADD R1,R2,R3
SUB R1’,R4,R5

⇒

UTCS
CS352, S07

Lecture 12 20

Summary

• Hazard detection and avoidance
• Improving Pipeline performance

• Next Time
– Reading assignment: P&H 6.9 – 6.12

