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Lecture 12: Pipelining Hazards

• Administrative
– HW #3 due
– HW #4 handed out, due Thursday after spring break
– Exam #1 handed out

• Review pipelining
• 5 stages
• Data Hazards

– Fixing them with forwarding
• Memory Hazards

– Fixing them with stalls
• Today

– Control hazards
• Branch delay slot, branch prediction

– Branch prediction

UTCS
CS352, S07

Lecture 12 2

Split machine into 5 pipeline stages
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It’s like attaching a note to the laundry basket used for a particular load
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Several instructions in progress at once
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Control signals are carried with each instruction
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Three kinds of Pipeline Hazards

• Data hazards
– an instruction uses the result of a previous instruction (RAW)

ADD R1, R2, R3 or SW R1, 3(R2)
ADD R4, R1, R5 LW R3, 3(R2)

• Control hazards
– the location of an instruction depends on a previous instruction

JMP LOOP
…

LOOP: ADD R1, R2, R3
• Structural hazards

– two instructions need access to the same resource
• e.g., single memory shared for instruction fetch and 

load/store
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Bypassing: send data directly to where it’s needed
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Memory hazards must stall:
The “Hazard detection unit” inserts a NOP
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Control Hazards
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Control Hazard: Branch on condition
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At what stage do we know if conditional is true?
What are the options for dealing with this?
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Move branch logic to ID stage
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How many cycles of stall now?

BGE R2, R3, ZZZ
...

XX:  ADD ...
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Branch Delay Slots

• Since we need to have a dead 
cycle anyway, let’s put a 
useful instruction there

• Advantage:
– Do more useful work
– Potentially get rid of all stalls

• Disadvantage:
– Exposes microarchitecture to 

ISA
– Deeper pipelines require more 

delay slots

ADD R2,R3,R4
BNEZ R5,_loop
NOP

BNEZ R5,_loop
ADD R2,R3,R4
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Speculating for control hazards

• Conservatively, the pipeline 
waits until the branch 
target is computed before 
fetching the next 
instruction. 

• Alternatively, we can 
speculate which direction 
and to what address the 
branch will go.

• Need to confirm 
speculation and back up 
later.
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How can we predict branch direction?

• Past history of this branch
– Last time
– Last two time (why is this useful?)

• Past history of last several branches
– Why is this useful?

for (i=0; i<1000; i++) {
for (j=0; j<1000; j++) {

if (j == 0) {
foo;

}
bar;

}
}

UTCS
CS352, S07

Lecture 12 14

Control Hazards Summary

• Three approaches
– Stall until new PC is known
– Speculate that branch goes a particular way

• If guess is right, great!
• If guess is wrong, kill off speculated work

– Delay slot

• Delay slot is only approach visible to programmer!
– Unfortunately, MIPS picked this approach!
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Exceptions – implicit conditional branches

• Examples of exceptions
– Overflow of result
– Page fault on load

• On an exception, branch to some address
• But – no explicit branch instruction!
• Architectural issues:

– What exceptions are supported?
– Are they “precise”?

• i.e. behavior is as-if there was no pipelining
– Adds significant complexity to implementation!
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Denormalized number

31 30-23 22-0

exponentsign mantissa

0 non-zero

Often, the floating-point hardware cannot directly handle these.
The floating-point unit generates an exception.
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Exception example
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ADD.S F1, F2, F3
MUL.S F4, F1, F5 What if F2 is a denormalized number?
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R4000 Pipeline

Instruction Memory Reg RegData Memory

IF IS RF EX DFDS TC WB

(I$ start) (ALU) (D$ start) (D$ finish)(decode/opfetch)(I$ finish) (tag check) (write back)

• How long is load delay?
• How long is branch delay?
• How many comparators are needed to implement the  

forwarding decisions?
• What instruction sequences will still cause stalls?
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How Do We Speed up the Pipeline?

• Pipeline too long ⇒ more ALUs (exploit ILP)
• WAR/WAW hazards ⇒ register renaming

• Undetermined dependencies at compile time ⇒
dynamic scheduling
– Object code compatibility
– Simplify compiler

• Too many branches ⇒ better branch prediction
– Or use predication to eliminate branches

• Unknown dependencies (control/data) ⇒ speculate
• Explicitly parallel architectures (VLIW / EPIC)

ADD R1,R2,R3
SUB R1,R4,R5

ADD R1,R2,R3
SUB R1’,R4,R5

⇒
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Summary

• Hazard detection and avoidance
• Improving Pipeline performance

• Next Time
– Reading assignment: P&H 6.9 – 6.12


