Lecture 12: Pipelining Hazards

+ Administrative
- HW #3 due
- HW #4 handed out, due Thursday after spring break
- Exam #1 handed out
* Review pipelining
+ b stages
+ Data Hazards
- Fixing them with forwarding
* Memory Hazards
- Fixing them with stalls
+ Today
- Control hazards
* Branch delay slot, branch prediction
- Branch prediction

UTCcS Lecture 12 1
CS352, S07

Split machine into 5 pipeline stages

IF/ID IDEEX EX/MEM MEMWB

Add
4 — Add Add
(shit resd
wik 2

2
H
g = =
X pC
| regiser 1 R |
R Zerd -
Insinuction g ALU ALy Read
memary — = Wie P L o result bl @n [T [T
> regisier - g
Wite memay
| daa -
Wie
dain
16 [sign |32
extend —

It’s like attaching a note to the laundry basket used for a particular load

uTCS Lecture 12 2
CS352, S07

Several instructions in progress at once

IF/ID

IDEEX

EXIMEM

MEM/WB

Add
4 — Add Add|
@9‘ Tesul
left 2
\
2 b{pc ress _ [re o
é IZ:S” @l |
Instruction [| regiser2 e
) _—>\7Q/r’]r:(<:h=v Eﬁz_’ Adies . E-' —
- e memory
i J
data.
16 @_33_ -
extend
- — = =
uUTCcS Lecture 12 3
CS352, S07
Control signals are carried with each instruction
\Dﬁ(
‘///7 < ws —‘ EXIVEM
\ / I L*
IF/D N A e
Shift resul Branch
s =
Instucion L B gualit] _— -
memary | lwe Rt | | Address proy
ey £
Ho Wt
dta
S I I T [e
e _/
- o e
LW R1, 4(R2)
Insiruction -
[15-11]
i e U o
uTCS Lecture 12 4

CS352, S07

Three kinds of Pipeline Hazards

Data hazards
- an instruction uses the result of a previous instruction (RAW)
ADD RI\RZ, R3 or S\ R1, 3(R2)
ADD R4,Rl,R5 LW R3, 3(R2)
Control hazards
- the location of an instruction depends on a previous instruction
JMP LOOP

LOOP: ADD R1,R2,R3
Structural hazards
- two instructions need access to the same resource

* e.g., single memory shared for instruction fetch and
load/store

UTCcS Lecture 12
CS352, S07

Bypassing: send data directly o where it's needed

ﬂ<
P
i
EH
¥
T

ADD R1, R2, R3
ADD R4, R1, RS
SuB R5, R1, R6
XOR R7, R8, R1
uTCS Lecture 12

CS352, S07

Memory hazards must stall:
The “"Hazard detection unit” inserts a NOP

Hazard

] g ID/EX.MemRead
— -~
» -)
=
= m we EXvEM
Control r M |—~ we |_MEWWB
§ IF@D U 0=) EX M WB—
° '
M
—{u
x
$§| Registers N
] T (| ol
Instruction E M e Y
pC memory [[] M Data .
u memory
x
U
t
IF/ID.RegisterRs
IF/ID.RegisterRt
IF/ID.RegisterRt
IF/ID.RegisterRd I
— ID/EX RegisterRt] *-|
LW R1, O(R2)
ADD R4, R1, R5
uTcS Lecture 12 7
CS352, S07
uTCS Lecture 12 8

CS352, S07

Control Hazard: Branch on condition

At what stage do we know if conditional is true?
(s What are the options for dealing with this?

ID/EX.MemRead
detection f—
—
ID/EX.

we EXIMEM
M 1]
Control u M we MEM/WB
* L
0= EX ™M WB—

:;E: IF@D
- M\
M
$§| Registers \x/
: o] L,
3 M ALY u
Instructi =
e H B : o |||t
i memory
A
t
IF/ID.RegisterRs
IF/ID.RegisterRt M)
IF/ID.RegisterRt R, |M
IF/ID.RegisterRd [Rd L;
L ID/EX.RegisterRt — I /—\:‘ 7-|
—R warding | —
BGE R2, R3, 77Z o
N A~
XXz ADD ...
UTCS Cecture 12 9
CS352, S07
Move branch logic to ID stage
— How many cycles of stall now?
E
" exmen
ool HiNm LL.i
| e e
TR T
G
left 2, _1_.
memory [[‘memory T "m
2l
(o) +
BGE R2, R3, Zzz
XX: ADD ...
UTCS Lecture 12 10

CS352, S07

Branch Delay Slots

« Since we need to have a dead
cycle anyway, let's put a
useful instruction there

ADD R2,R3,R4
* Advantage: BNEZ R5,_loop
NOP
- Do more useful work
- Potentially get rid of all stalls l

BNEZ R5,_loop

+ Disadvantage: ADD R2,R3,R4
- Exposes microarchitecture to
ISA
- Deeper pipelines require more
delay slots
UTCcS Lecture 12

CS352, s07

11

Speculating for control hazards

Conservatively, the pipeline

waits until the branch
target is computed before

fetching the next [ETRIX MW
instruction. '
Al’rer'naﬂvely., we can TTRIXTNT
speculate which direction

and to what address the [FIRIXMJW]

branch will go.

Need to confirm [FIRIXIM]w]
speculation and back up EERRNM
later.

uTCS Lecture 12
CS352, S07

12

How can we predict branch direction?

+ Past history of this branch
- Last time
- Last two time (why is this useful?)

* Past history of last several branches
- Why is this useful?

for (i=0; i<1000; i++) {
for (j=0; j<1000; Jj++) {

if (3 == 0) {
foo;
}
bar;
}
}
UTCcS Lecture 12 13

CS352, s07

Control Hazards Summary

* Three approaches
- Stall until new PC is known
- Speculate that branch goes a particular way
- If guess is right, great!
« If guess is wrong, kill off speculated work
- Delay slot

+ Delay slot is only approach visible to programmer!
- Unfortunately, MIPS picked this approach!

uTCS Lecture 12 14
CS352, S07

Exceptions - implicit conditional branches

- Examples of exceptions
- Overflow of result
- Page fault on load
+ On an exception, branch to some address
* But - no explicit branch instruction!
* Architectural issues:
- What exceptions are supported?
- Are they "precise”?
* i.e. behavior is as-if there was no pipelining
- Adds significant complexity to implementation!

UTCcS Lecture 12 15
CS352, S07

Denormalized number

31 30-23 22-0
0 non-zero
sign exponent mantissa

Often, the floating-point hardware cannot directly handle these.
The floating-point unit generates an exception.

uTCS Lecture 12 16
CS352, S07

Exception example

IEFlush

IFlD

ADD.S F1, F2, F3

MUL.S F4, F1, F5 What if F2 is a denormalized number?
uTCcS Lecture 12 17
CS352, S07

R4000 Pipeline

(1$ start) (1$ finish) (decode/opfetch) (ALU) (D$ start) (D$ finish) (tag check) (write back)
IF IS RF EX DS DF TC WB
Instruction Memory |—E Reg Data Memory Reg

* How long is load delay?

* How long is branch delay?

« How many comparators are needed to implement the
forwarding decisions?

* What instruction sequences will still cause stalls?

uTCS Lecture 12 18
CS352, S07

How Do We Speed up the Pipeline?

Pipeline too long = more ALUs (exploit ILP)
WAR/WAW hazards = register renaming

ADD R1,R2,R3 N ADD R1,R2,R3
SUB R1,R4,R5 SUB R17,R4,R5

Undetermined dependencies at compile time =
dynamic scheduling

- Object code compatibility

- Simplify compiler

Too many branches = better branch prediction

- Or use predication to eliminate branches

Unknown dependencies (control/data) = speculate
Explicitly parallel architectures (VLIW / EPIC)

UTCcS Lecture 12 19
CS352, S07

Summary

Hazard detection and avoidance
+ Improving Pipeline performance

+ Next Time

- Reading assignment: P&H 6.9 - 6.12

uTCS Lecture 12 20
CS352, S07

10

