Lecture 12: Pipelining Hazards

+ Administrative
- HW #3 due
- HW #4 handed out, due Thursday after spring break
- Exam #1 handed out
* Review pipelining
+ b stages
+ Data Hazards
- Fixing them with forwarding
* Memory Hazards
- Fixing them with stalls
+ Today
- Control hazards
* Branch delay slot, branch prediction
- Branch prediction
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Split machine into 5 pipeline stages
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It’s like attaching a note to the laundry basket used for a particular load
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Several instructions in progress at once
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Control signals are carried with each instruction
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Three kinds of Pipeline Hazards

Data hazards
- an instruction uses the result of a previous instruction (RAW)
ADD RI\RZ, R3 or S\ R1, 3(R2)
ADD R4,Rl,R5 LW R3, 3(R2)
Control hazards
- the location of an instruction depends on a previous instruction
JMP  LOOP

LOOP: ADD R1,R2,R3
Structural hazards
- two instructions need access to the same resource

* e.g., single memory shared for instruction fetch and
load/store
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Bypassing: send data directly o where it's needed
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ADD R1, R2, R3
ADD R4, R1, RS
SuB R5, R1, R6
XOR R7, R8, R1
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Memory hazards must stall:
The “"Hazard detection unit” inserts a NOP
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Control Hazard: Branch on condition

At what stage do we know if conditional is true?
(s What are the options for dealing with this?
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Move branch logic to ID stage
— How many cycles of stall now?
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Branch Delay Slots

« Since we need to have a dead
cycle anyway, let's put a
useful instruction there

ADD R2,R3,R4
* Advantage: BNEZ R5,_loop
NOP
- Do more useful work
- Potentially get rid of all stalls l

BNEZ R5,_loop

+ Disadvantage: ADD R2,R3,R4
- Exposes microarchitecture to
ISA
- Deeper pipelines require more
delay slots
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Speculating for control hazards

Conservatively, the pipeline

waits until the branch
target is computed before

fetching the next [ETRIX MW
instruction. '
Al’rer'naﬂvely., we can TTRIXTNT
speculate which direction

and to what address the [FIRIXMJW]

branch will go.

Need to confirm [ FIRIXIM]w]
speculation and back up EERRNM
later.
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How can we predict branch direction?

+ Past history of this branch
- Last time
- Last two time (why is this useful?)

* Past history of last several branches
- Why is this useful?

for (i=0; i<1000; i++) {
for (j=0; j<1000; Jj++) {

if (3 == 0) {
foo;
}
bar;
}
}
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Control Hazards Summary

* Three approaches
- Stall until new PC is known
- Speculate that branch goes a particular way
- If guess is right, great!
« If guess is wrong, kill off speculated work
- Delay slot

+ Delay slot is only approach visible to programmer!
- Unfortunately, MIPS picked this approach!
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Exceptions - implicit conditional branches

- Examples of exceptions
- Overflow of result
- Page fault on load
+ On an exception, branch to some address
* But - no explicit branch instruction!
* Architectural issues:
- What exceptions are supported?
- Are they "precise”?
* i.e. behavior is as-if there was no pipelining
- Adds significant complexity to implementation!
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Denormalized number

31 30-23 22-0
0 non-zero
sign exponent mantissa

Often, the floating-point hardware cannot directly handle these.
The floating-point unit generates an exception.
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Exception example

IEFlush

IFlD

ADD.S F1, F2, F3

MUL.S F4, F1, F5 What if F2 is a denormalized number?
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R4000 Pipeline

(1$ start) (1$ finish) (decode/opfetch) (ALU) (D$ start)  (D$ finish) (tag check)  (write back)
IF IS RF EX DS DF TC WB
Instruction Memory |—E Reg Data Memory Reg

* How long is load delay?

* How long is branch delay?

« How many comparators are needed to implement the
forwarding decisions?

* What instruction sequences will still cause stalls?
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How Do We Speed up the Pipeline?

Pipeline too long = more ALUs (exploit ILP)
WAR/WAW hazards = register renaming

ADD R1,R2,R3 N ADD R1,R2,R3
SUB R1,R4,R5 SUB R17,R4,R5

Undetermined dependencies at compile time =
dynamic scheduling

- Object code compatibility

- Simplify compiler

Too many branches = better branch prediction

- Or use predication to eliminate branches

Unknown dependencies (control/data) = speculate
Explicitly parallel architectures (VLIW / EPIC)
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Summary

Hazard detection and avoidance
+ Improving Pipeline performance

+ Next Time

- Reading assignment: P&H 6.9 - 6.12
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