Lecture 9: Datapath control

e Last Time
— Datapath organization

e Today
— Datapath control
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Instruction Execution

* 5basic steps
— fetch instruction (F)

— decode instruction I-Fetch
and read registers (R)
— execute (X) !
— access memory (M) Decode
— store result (W) T
Execute
|
Memory
¥
Write

Result
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The Processor: Datapath & Control

< We're ready to look at an implementation of the MIPS

« Three categories of instructions:
— memory-reference instructions: Iw, sw
— arithmetic-logical instructions: add, sub, and, or, slt

— control flow instructions: beq, j
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Pieces we'll need
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Stitch pieces together: Single-cycle MIPS datapath
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Datapath control
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Control

* Selecting the operations to perform (ALU, read/write, etc.)

¢ Controlling the flow of data (multiplexor inputs)

¢ Information comes from the 32 bits of the instruction

« Example:

add $8, $17, $18

Instruction Format:

| 0ooooo| 10001| 10010] 01000] 00000[100000]

| op | rs | rt | rd |shamt| funct|

« ALU's operation based on instruction type and function code
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Control for ALU

e Suppose the ALU control inputs work like this:

0000
0001
0010
0110
0111
1100

AND

OR

add

subtract
set-on-less-than
NOR

¢ Why is the code for subtract 0110 and not 0011?
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ALU control is driven by the instruction

« Example:

add $8, $17, $18

| 00oooo| 10001| 10010] 01000] 00000[100000]

| op | rs | rt | rd |shamt| funct|
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Must convert instruction bits to ALU control bits

« Example:

add $8, $17, $18

|000000| 1000110010 | 01000 | 00000 100000]

| op | rs | rt | rd |shamt | funct|
0000 AND
. ALU 0001 OR
ALUOp0 . 0010 add
»| Control 0110 subtract
—| Control l ALUOp1 , 0111 set-on-less-than
MemRead 1100 NOR
Etc.
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How the “ALU Control” unit works

¢ Must describe hardware to compute 4-bit ALU control input
— given instruction type

00 = |W, SW \ ALUOp

0l=beq, computed from instruction type
10 = arithmetic

— function code for arithmetic

e Describe it using atruth table (can turn into gates):

S T —
o T 5
X X X X X

) 0 X 0010
X 1 X X X X X X 0110
1 X X X 0 0 0 0 0010
1 X X X 0 0 1 0 0110
1 X X X o 1 o 0 0000
1 X X X o 1 o 1 0001
1 % % 1 o 1 o 0111

FIGURE 5.13 The truth table for the three ALU control bits (called Operation). The inputs
are the ALUOp and function code field. Only the entries for which the ALU control is asserted are shown

Some don't-care entries have been added. For example, the ALUOp does not use the encoding 11, so the
truth table can contain entriss 1 and X1, rather than 10 and 01. Alse, when the function field is used, the
first twa bits (F5 and F4) of these instructions are always 10, so they are don't-care terms and are replaced
with JCCin the truth table.
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Control is built with combinational logic

Inputs

ops It’s just the logic to
gpg implement a truth table
P
Op2
Opl I
Opo
lLI; oouI olo I oooé&
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] ALUSrc
MemtoReg
] RegWrite
MemRead
MemWrite
Branch
ALUOp1
ALUOpO
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Our Simple Control Structure

¢ All of the logic is combinational
« We wait for everything to settle down, and the right thing to be done
— ALU might not produce “right answer” right away
— we use write signals along with clock to determine when to write
¢ Cycletime determined by length of the longest path

State State
element Combinational logic element
1 2
Clock cycle J \—,7

We are ignoring some details like setup and hold times
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Single Cycle Implementation

PCSrc
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X
ALU
4 Add result
->
Read —| fee?sier 1 ALUSrc ALU operation
| PC address 9 theaT | MemWrite
ata
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Instruction 4 register 2
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memory l)é
—»| Write
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Where we are headed

¢ Single Cycle Problems:
— what if we want to reuse hardware (e.g. ALU/Adder) rather than
having two copies?
¢ One Solution:
— use a‘“smaller” cycle time
— have different instructions take different numbers of cycles
— a“multicycle” datapath:

Instruction
register
PC Address

Data \
Register #
Registers | ALUOUL

Register #

Instruction
Memory OF data

Memory

Data data ¢
" register

Register #
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Summary so far

« Datapath organization
« Datapath control
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Multicycle Datapath
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Multicycle Approach

* We will be reusing functional units
— ALU used to compute address and to increment PC
— Memory used for instruction and data

e Our control signals will not be determined directly by instruction
— e.g., what should the ALU do for a “subtract” instruction?

* We'll use afinite state machine for control
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Multicycle Approach

« Break up the instructions into steps, each step takes a cycle
— balance the amount of work to be done
— restrict each cycle to use only one major functional unit
¢ Atthe end of acycle
— store values for use in later cycles (easiest thing to do)
— introduce additional “internal” registers

LEL

Read

Address [25-21] register 1 oo
Instruction Read data 1

m
M;e!:ga[a [207151 T_, 0 register 2
Instruction | M Registers
125-0] [ |instruction| u | Write " ooy
Write [15-1] | X | o
data Instruction | $———\1

register 5 Write
e data
Instruction M
[15-0] M
LT

Memory 16

data | extend
register \

=
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rxcZ o

Instruction Read
| Address [25-21] register 1 Read
Instruction data 1
Read
Memory [20-16]

register 2
MemData

Instruction | _ Registers
[15-0] | |Instruction Write Read
| Write | lps-11) Tegister  yata 2
data Instruction |4 )
register ) Write
data
Instruction M
[15-0] M
B
Memory 16

data
register
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Instructions from ISA perspective

e Consider each instruction from perspective of ISA.
« Example:

The add instruction changes a register.

Register specified by bits 15:11 of instruction.

Instruction specified by the PC.

New value is the sum (“op”) of two registers.

Registers specified by bits 25:21 and 20:16 of the instruction

Reg[Memory[PC][15:11]] <= Reg[Memory[PC][25:21]] op
Reg[[Memory[PC][20:16]]

In order to accomplish this we must break up the instruction.
(kind of like introducing variables when programming)
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Breaking down an instruction

¢ |SA definition of arithmetic:

Reg[Memory[PC][15:11]] <= Reg[Memory[PC][25:21]] op
Reg[Memory[PC][20:16]]

¢ Could break down to:

— IR <= Memory[PC]

— A <= Reg[IR[25:21]]

— B <= Reg[IR[20:16]]

— ALUOut <= A op B
Reg[IR[20:16]] <= ALUOut

« We forgot an important part of the definition of arithmetic!
— PC <= PC + 4

©2004 Morgan Kaufmann Publishers 23

Idea behind multicycle approach

« We define each instruction from the ISA perspective (do this!)

« Break it down into steps following our rule that data flows through at
most one major functional unit (e.g., balance work across steps)

« Introduce new registers as needed (e.g, A, B, ALUOut, MDR, etc.)

¢ Finally try and pack as much work into each step
(avoid unnecessary cycles)
while also trying to share steps where possible
(minimizes control, helps to simplify solution)

¢ Result: Our book’s multicycle Implementation!
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Five Execution Steps

¢ Instruction Fetch

« Instruction Decode and Register Fetch

« Execution, Memory Address Computation, or Branch Completion
< Memory Access or R-type instruction completion

e Write-back step

INSTRUCTIONS TAKE FROM 3 -5 CYCLES!
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Step 1: Instruction Fetch

e Use PCto getinstruction and put it in the Instruction Register.
* Increment the PC by 4 and put the result back in the PC.
e Can be described succinctly using RTL "Register-Transfer Language"

IR <= Memory[PC];
PC <= PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?
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0
M Instruction Read
g | Address [25-21] register 1 Read
1 Instruction Read data 1
Memory [20-16] register 2
MemData Instruction |_ _ Registers
[15-0] | |Instruction e Read
—~| Write [15-11] register data 2
data Instruction |4 .
register ) Write
e data
Instruction M
[15-0] 3
B
Memory 16 Sign
data extend
register
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Step 2: Instruction Decode and Register Fetch

« Read registers rs and rtin case we need them
« Compute the branch address in case the instruction is a branch
e RTL:

A <= Reg[IR[25:21]1:;

B <= Reg[IR[20:16]]1;
ALUOut <= PC + (sign-extend(IR[15:0]) << 2);

< We aren't setting any control lines based on the instruction type
(we are busy "decoding" it in our control logic)
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0
M Instruction Read
g | Address [25-21] register 1 Read
1 Instruction Read data 1
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B
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Step 3 (instruction dependent)

« ALU s performing one of three functions, based on instruction type

< Memory Reference:

ALUOut <= A + sign-extend(IR[15:0]);

¢ R-type:

ALUOut <= A op B;

¢ Branch:

if (A==B) PC <= ALUOut;
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Step 4 (R-type or memory-access)

¢ Loads and stores access memory

MDR <= Memory[ALUOut];
or
Memory[ALUOut] <= B;

¢ R-typeinstructions finish

Reg[IR[15:11]] <= ALUOut;

The write actually takes place at the end of the cycle on the edge

©2004 Morgan Kaufmann Publishers 32




| Address

“xcZ o
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Write-back step

= Reg[IR[20:16]] <= MDR;

Which instruction needs this?
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L
pC M Instruction Read
)L: | Address [25-21] register 1 Read
1 Instruction Read data 1
Memory [20-16] register 2
MemData Instruction |_ Registers
[15-0] | |Instruction e Read
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Instruction M
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B
Memory 16 Sign
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Summary:

for Riypa Action for mamory- Action for
instruction: reference instructions Jumps.

Instruction fetch IR <= Memory[FC]
PCe=PC+4
Instruction decods, Teglstar fateh & == Reg [IR[25:21]]

B <= Reg [IR[20:16]]
ALUOUL <= FC + {slgrrextend (IR[15:0]) << 2)

Exacution, address computation, | ALUOUL<=Aop B ALUOUL <= A + signextend If (A ==8) PG <= [FC [31:28],
branch Jump complat on {IR[15:0]) PC <= ALLIOUt (IR[26:0]],2'B003}
Memaory accass of Rtype Reg [IR[15:11]] <= Load: MOR <= Memory[ALUCut]
competion ALUout or

Store: Memory [ALUOUT] <= B
Memary read completon Load: Reg[IR[20:16]] <= MDR

FAGURE 5.30 Summary of the steps taken to execute any instruction class. Instructions take from three to five execution steps. The
first twe steps are independent of the instruction class. After these steps, an instruction takes from one to thres more cycles to complete, depending on
the instruction class. The empty entries for the Memory access step or the Memory read completion step indicate that the particular instruction class
takes fewer cycles. In a multicycle implementation, a new instruction will be started as scan as the current instruction completes, so these cycles are
not idle or wasted. As mentioned earlier, the register file actually reads every cycle, but as long as the IR does not change, the values read from the reg-
ister file are identical. In particular, the value read into register B during the Instruction decode stage, for o branch or B-typs instruction, is the same as
the value stored into B during the Exscution stage and then used in the Memory access stage for a store word instruction.
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Simple Questions

« How many cycles will it take to execute this code?

Label:

Iw $t2, 0($t3)
Iw $t3, 4($t3)

beq $t2, $t3, Label/

add $t5, $t2, $t3
sw $t5, 8($t3)

< What is going on during the 8th cycle of execution?
¢ In what cycle does the actual addition of $t2 and $t3 takes place?

#assume not

nmuuyoouirrruyyyurur gL
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Pipeline example: Doing Laundry
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Summary

« Datapath control
¢ Multicycle machine

¢ Next Time
— Exam review

* After exam:
— Pipelining (P&H 6.1 -6.3)
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