
1©2004 Morgan Kaufmann Publishers

Lecture 9: Datapath control

• Last Time
– Datapath organization

• Today
– Datapath control

2©2004 Morgan Kaufmann Publishers

Instruction Execution

• 5 basic steps
– fetch instruction (F)
– decode instruction

and read registers (R)
– execute (X)
– access memory (M)
– store result (W)

I-Fetch

Decode

Execute

Memory

Write
Result

3©2004 Morgan Kaufmann Publishers

• We're ready to look at an implementation of the MIPS
• Three categories of instructions:

– memory-reference instructions: lw, sw
– arithmetic-logical instructions: add, sub, and, or, slt
– control flow instructions: beq, j

The Processor: Datapath & Control

4©2004 Morgan Kaufmann Publishers

Pieces we’ll need

PC ALU

Data

Register #

Register #

Register #

Registers

Address

Data

Data
memoryAddress Instruction

Instruction
memory

5©2004 Morgan Kaufmann Publishers

Stitch pieces together: Single-cycle MIPS datapath

Read
register 1

Read
register 2

Write
register

Write
data

Write
data

Registers ALU

Add

Zero

RegWrite

MemRead

MemWrite

PCSrc

MemtoReg

Read
data 1

Read
data 2

ALU operation4

Sign
extend

16 32

Instruction ALU
result

Add

ALU
result

M
u
x

M
u
x

M
u
x

ALUSrc

Address

Data
memory

Read
data

Shift
left 2

4

Read
address

Instruction
memory

PC

6©2004 Morgan Kaufmann Publishers

Datapath control

7©2004 Morgan Kaufmann Publishers

Control

• Selecting the operations to perform (ALU, read/write, etc.)
• Controlling the flow of data (multiplexor inputs)
• Information comes from the 32 bits of the instruction
• Example:

add $8, $17, $18 Instruction Format:

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

• ALU's operation based on instruction type and function code

Instruction RegDst ALUSrc
Memto-

Reg
Reg

Write
Mem
Read

Mem
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

Read
register 1

Read
register 2

Write
register

Write
data

Write
data

Registers

ALU

Add

Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[31–0] ALU

result

Add

ALU
result

M
u
x

M
u
x

M
u
x

Address

Data
memory

Read
data

Shift
left 2

4

Read
address

Instruction
memory

PC

1

0

0

1

0

1

M
u
x

0

1

ALU
control

Instruction [5–0]

Instruction [25–21]

Instruction [31–26]

Instruction [15–11]

Instruction [20–16]

Instruction [15–0]

RegDst
Branch
MemRead
MemtoReg
ALUOp
MemWrite
ALUSrc
RegWrite

Control

9©2004 Morgan Kaufmann Publishers

• Suppose the ALU control inputs work like this:

0000 AND
0001 OR
0010 add
0110 subtract
0111 set-on-less-than
1100 NOR

• Why is the code for subtract 0110 and not 0011?

Control for ALU

10©2004 Morgan Kaufmann Publishers

ALU control is driven by the instruction

• Example:

add $8, $17, $18

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

11©2004 Morgan Kaufmann Publishers

Must convert instruction bits to ALU control bits

• Example:

add $8, $17, $18

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

ALU
Control

0000 AND
0001 OR
0010 add
0110 subtract
0111 set-on-less-than
1100 NOR

Control
ALU Op 0

ALU Op 1

MemRead
Etc.

12©2004 Morgan Kaufmann Publishers

• Must describe hardware to compute 4-bit ALU control input
– given instruction type

00 = lw, sw
01 = beq,
10 = arithmetic

– function code for arithmetic

• Describe it using a truth table (can turn into gates):

ALUOp
computed from instruction type

How the “ALU Control” unit works

13©2004 Morgan Kaufmann Publishers

Control is built with combinational logic

R-format Iw sw beq

Op0
Op1
Op2
Op3
Op4
Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO

It’s just the logic to
implement a truth table

14©2004 Morgan Kaufmann Publishers

• All of the logic is combinational
• We wait for everything to settle down, and the right thing to be done

– ALU might not produce “right answer” right away
– we use write signals along with clock to determine when to write

• Cycle time determined by length of the longest path

Our Simple Control Structure

We are ignoring some details like setup and hold times

State
element

1

State
element

2
Combinational logic

Clock cycle

15©2004 Morgan Kaufmann Publishers

Single Cycle Implementation

Calculate cycle time
assuming negligible
delays except:

• memory (200ps)
• ALU and adders

(100ps)
• register file access

(50ps)

Read
register 1

Read
register 2

Write
register

Write
data

Write
data

Registers ALU

Add

Zero

RegWrite

MemRead

MemWrite

PCSrc

MemtoReg

Read
data 1

Read
data 2

ALU operation4

Sign
extend

16 32

Instruction ALU
result

Add

ALU
result

M
u
x

M
u
x

M
u
x

ALUSrc

Address

Data
memory

Read
data

Shift
left 2

4

Read
address

Instruction
memory

PC

16©2004 Morgan Kaufmann Publishers

Where we are headed

• Single Cycle Problems:
– what if we want to reuse hardware (e.g. ALU/Adder) rather than

having two copies?
• One Solution:

– use a “smaller” cycle time
– have different instructions take different numbers of cycles
– a “multicycle” datapath:

Data

Register #

Register #

Register #

PC Address

Instruction
or dataMemory Registers ALU

Instruction
register

Memory
data

register

ALUOut

A

B
Data

17©2004 Morgan Kaufmann Publishers

Summary so far

• Datapath organization
• Datapath control

18©2004 Morgan Kaufmann Publishers

Multicycle Datapath

19©2004 Morgan Kaufmann Publishers

• We will be reusing functional units
– ALU used to compute address and to increment PC
– Memory used for instruction and data

• Our control signals will not be determined directly by instruction
– e.g., what should the ALU do for a “subtract” instruction?

• We’ll use a finite state machine for control

Multicycle Approach

20©2004 Morgan Kaufmann Publishers

• Break up the instructions into steps, each step takes a cycle
– balance the amount of work to be done
– restrict each cycle to use only one major functional unit

• At the end of a cycle
– store values for use in later cycles (easiest thing to do)
– introduce additional “internal” registers

Multicycle Approach

Read
register 1

Read
register 2

Write
register

Write
data

Registers ALU
Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0
1
2
3

ALUOut

Instruction
[15–0]

Memory
data

register

Address

Write
data

Memory
MemData

4

Instruction
[15–11]

21©2004 Morgan Kaufmann Publishers

Read
register 1

Read
register 2

Write
register

Write
data

Registers ALU
Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0
1
2
3

ALUOut

Instruction
[15–0]

Memory
data

register

Address

Write
data

Memory
MemData

4

Instruction
[15–11]

22©2004 Morgan Kaufmann Publishers

Instructions from ISA perspective

• Consider each instruction from perspective of ISA.
• Example:

– The add instruction changes a register.
– Register specified by bits 15:11 of instruction.
– Instruction specified by the PC.
– New value is the sum (“op”) of two registers.
– Registers specified by bits 25:21 and 20:16 of the instruction

Reg[Memory[PC][15:11]] <= Reg[Memory[PC][25:21]] op
Reg[Memory[PC][20:16]]

– In order to accomplish this we must break up the instruction.
(kind of like introducing variables when programming)

23©2004 Morgan Kaufmann Publishers

Breaking down an instruction

• ISA definition of arithmetic:

Reg[Memory[PC][15:11]] <= Reg[Memory[PC][25:21]] op
Reg[Memory[PC][20:16]]

• Could break down to:
– IR <= Memory[PC]
– A <= Reg[IR[25:21]]
– B <= Reg[IR[20:16]]
– ALUOut <= A op B
– Reg[IR[20:16]] <= ALUOut

• We forgot an important part of the definition of arithmetic!
– PC <= PC + 4

24©2004 Morgan Kaufmann Publishers

Idea behind multicycle approach

• We define each instruction from the ISA perspective (do this!)

• Break it down into steps following our rule that data flows through at
most one major functional unit (e.g., balance work across steps)

• Introduce new registers as needed (e.g, A, B, ALUOut, MDR, etc.)

• Finally try and pack as much work into each step
(avoid unnecessary cycles)

while also trying to share steps where possible
(minimizes control, helps to simplify solution)

• Result: Our book’s multicycle Implementation!

25©2004 Morgan Kaufmann Publishers

• Instruction Fetch

• Instruction Decode and Register Fetch

• Execution, Memory Address Computation, or Branch Completion

• Memory Access or R-type instruction completion

• Write-back step

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

Five Execution Steps

26©2004 Morgan Kaufmann Publishers

• Use PC to get instruction and put it in the Instruction Register.
• Increment the PC by 4 and put the result back in the PC.
• Can be described succinctly using RTL "Register-Transfer Language"

IR <= Memory[PC];
PC <= PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

Step 1: Instruction Fetch

27©2004 Morgan Kaufmann Publishers

Read
register 1

Read
register 2

Write
register

Write
data

Registers ALU
Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0
1
2
3

ALUOut

Instruction
[15–0]

Memory
data

register

Address

Write
data

Memory
MemData

4

Instruction
[15–11]

28©2004 Morgan Kaufmann Publishers

• Read registers rs and rt in case we need them
• Compute the branch address in case the instruction is a branch
• RTL:

A <= Reg[IR[25:21]];
B <= Reg[IR[20:16]];
ALUOut <= PC + (sign-extend(IR[15:0]) << 2);

• We aren't setting any control lines based on the instruction type
(we are busy "decoding" it in our control logic)

Step 2: Instruction Decode and Register Fetch

29©2004 Morgan Kaufmann Publishers

Read
register 1

Read
register 2

Write
register

Write
data

Registers ALU
Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0
1
2
3

ALUOut

Instruction
[15–0]

Memory
data

register

Address

Write
data

Memory
MemData

4

Instruction
[15–11]

30©2004 Morgan Kaufmann Publishers

• ALU is performing one of three functions, based on instruction type

• Memory Reference:

ALUOut <= A + sign-extend(IR[15:0]);

• R-type:

ALUOut <= A op B;

• Branch:

if (A==B) PC <= ALUOut;

Step 3 (instruction dependent)

31©2004 Morgan Kaufmann Publishers

Read
register 1

Read
register 2

Write
register

Write
data

Registers ALU
Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0
1
2
3

ALUOut

Instruction
[15–0]

Memory
data

register

Address

Write
data

Memory
MemData

4

Instruction
[15–11]

32©2004 Morgan Kaufmann Publishers

• Loads and stores access memory

MDR <= Memory[ALUOut];
or

Memory[ALUOut] <= B;

• R-type instructions finish

Reg[IR[15:11]] <= ALUOut;

The write actually takes place at the end of the cycle on the edge

Step 4 (R-type or memory-access)

33©2004 Morgan Kaufmann Publishers

Read
register 1

Read
register 2

Write
register

Write
data

Registers ALU
Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0
1
2
3

ALUOut

Instruction
[15–0]

Memory
data

register

Address

Write
data

Memory
MemData

4

Instruction
[15–11]

34©2004 Morgan Kaufmann Publishers

• Reg[IR[20:16]] <= MDR;

Which instruction needs this?

Write-back step

35©2004 Morgan Kaufmann Publishers

Read
register 1

Read
register 2

Write
register

Write
data

Registers ALU
Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0
1
2
3

ALUOut

Instruction
[15–0]

Memory
data

register

Address

Write
data

Memory
MemData

4

Instruction
[15–11]

36©2004 Morgan Kaufmann Publishers

Summary:

37©2004 Morgan Kaufmann Publishers

• How many cycles will it take to execute this code?

lw $t2, 0($t3)
lw $t3, 4($t3)
beq $t2, $t3, Label #assume not
add $t5, $t2, $t3
sw $t5, 8($t3)

Label: ...

• What is going on during the 8th cycle of execution?
• In what cycle does the actual addition of $t2 and $t3 takes place?

Simple Questions

38©2004 Morgan Kaufmann Publishers

Read
register 1

Read
register 2

Write
register

Write
data

Registers ALU
Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[31–26]

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift
left 2

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0
1
2
3

M
u
x

0

1

2

ALUOut

Instruction
[15–0]

Memory
data

register

Address

Write
data

Memory
MemData

4

Instruction
[15–11]

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

26 28

Outputs

Control

Op
[5–0]

ALU
control

PC [31–28]

Instruction [25-0]

Instruction [5–0]

Jump
address
[31–0]

39©2004 Morgan Kaufmann Publishers

Pipeline example: Doing Laundry

40©2004 Morgan Kaufmann Publishers

Summary

• Datapath control
• Multicycle machine

• Next Time
– Exam review

• After exam:
– Pipelining (P&H 6.1 – 6.3)

