Lecture 9: Datapath control

e Last Time
— Datapath organization

e Today
— Datapath control

©2004 Morgan Kaufmann Publishers 1

Instruction Execution

* 5basic steps
— fetch instruction (F)

— decode instruction I-Fetch
and read registers (R)
— execute (X) !
— access memory (M) Decode
— store result (W) T
Execute
|
Memory
¥
Write

Result

©2004 Morgan Kaufmann Publishers 2

The Processor: Datapath & Control

< We're ready to look at an implementation of the MIPS

« Three categories of instructions:
— memory-reference instructions: Iw, sw
— arithmetic-logical instructions: add, sub, and, or, slt

— control flow instructions: beq, j

©2004 Morgan Kaufmann Publishers 3

Pieces we'll need

Data
—>

Register #
Registers

Register #

\
3
el é

Register #

1 rfﬂlA or VM/\;:C

1]

Address
) Data
»| Address Instruction memory

Instruction +| Data
memory

©2004 Morgan Kaufmann Publishers 4

Stitch pieces together: Single-cycle MIPS datapath

PCSrc
I y
Add M
X
4
Read ALU o i
— : peration
register 1
- PC 8| - dress 9! dRead MemWrite
ata 1
L Ree_ld MemtoReg
) register 2
Instruction 4 Regist Read
) €gISters pead Address o
) ,.| Write data 2 data
Instruction register ata
memory
—»| Write
data Wit Data
rite
RegWrite data memery
16) 32 MemRead
Sign
extend

©2004 Morgan Kaufmann Publishers 5

Datapath control

©2004 Morgan Kaufmann Publishers 6

Control

* Selecting the operations to perform (ALU, read/write, etc.)

¢ Controlling the flow of data (multiplexor inputs)

¢ Information comes from the 32 bits of the instruction

« Example:

add $8, $17, $18

Instruction Format:

| 0ooooo| 10001| 10010] 01000] 00000[100000]

| op | rs | rt | rd |shamt| funct|

« ALU's operation based on instruction type and function code

©2004 Morgan Kaufmann Publishers 7

Add
4]
/ 7\ RegDst
/ __Branch
[|_MemRead
Instruction [31-26] | MemtoReg
| Control T ALUCP
“ | MemWrite
\ | _ALUSrc
\ / RegWrite
\,/“
[25-21] Read
Lol pc .»:g;dess register 1 oo
Instruction [20-16] Read data 1
Instruction | | | % register 2
[31-0] ") Read Address R¢ad
Write
mstction | || nstruction (15-117| 4 [register 9382 data
memory 1
| Write
data Registers B Data
Write - memory
. data
N\
Instruction [15-0] 16 sign 32 / \
extend o~ ALY
control |
_/
Instruction [5-0]
Memto- | Reg | Mem | Mem
Instruction | RegDst [ALUSrc | Rea | Write | Read | Write| Branch | ALUOp1| ALUpO
R-format 1 0 0 1 0 0 0 1 0
Iw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

Control for ALU

e Suppose the ALU control inputs work like this:

0000
0001
0010
0110
0111
1100

AND

OR

add

subtract
set-on-less-than
NOR

¢ Why is the code for subtract 0110 and not 0011?

©2004 Morgan Kaufmann Publishers 9

ALU control is driven by the instruction

« Example:

add $8, $17, $18

| 00oooo| 10001| 10010] 01000] 00000[100000]

| op | rs | rt | rd |shamt| funct|

©2004 Morgan Kaufmann Publishers 10

Must convert instruction bits to ALU control bits

« Example:

add $8, $17, $18

|000000| 1000110010 | 01000 | 00000 100000]

| op | rs | rt | rd |shamt | funct|
0000 AND
. ALU 0001 OR
ALUOp0 . 0010 add
»| Control 0110 subtract
—| Control l ALUOp1 , 0111 set-on-less-than
MemRead 1100 NOR
Etc.

©2004 Morgan Kaufmann Publishers 1 1

How the “ALU Control” unit works

¢ Must describe hardware to compute 4-bit ALU control input
— given instruction type

00 = |W, SW \ ALUOp

0l=beq, computed from instruction type
10 = arithmetic

— function code for arithmetic

e Describe it using atruth table (can turn into gates):

S T —
o T 5
X X X X X

) 0 X 0010
X 1 X X X X X X 0110
1 X X X 0 0 0 0 0010
1 X X X 0 0 1 0 0110
1 X X X o 1 o 0 0000
1 X X X o 1 o 1 0001
1 % % 1 o 1 o 0111

FIGURE 5.13 The truth table for the three ALU control bits (called Operation). The inputs
are the ALUOp and function code field. Only the entries for which the ALU control is asserted are shown

Some don't-care entries have been added. For example, the ALUOp does not use the encoding 11, so the
truth table can contain entriss 1 and X1, rather than 10 and 01. Alse, when the function field is used, the
first twa bits (F5 and F4) of these instructions are always 10, so they are don't-care terms and are replaced
with JCCin the truth table.

wWevus morgan Kaufmann Publishers 1 2

Control is built with combinational logic

Inputs

ops It’s just the logic to
gpg implement a truth table
P
Op2
Opl I
Opo
lLI; oouI olo I oooé&
[; LJ LJ [j Outputs
R-format] Iw SW beq RegDst
] ALUSrc
MemtoReg
] RegWrite
MemRead
MemWrite
Branch
ALUOp1
ALUOpO

©2004 Morgan Kaufmann Publishers 13

Our Simple Control Structure

¢ All of the logic is combinational
« We wait for everything to settle down, and the right thing to be done
— ALU might not produce “right answer” right away
— we use write signals along with clock to determine when to write
¢ Cycletime determined by length of the longest path

State State
element Combinational logic element
1 2
Clock cycle J \—,7

We are ignoring some details like setup and hold times

©2004 Morgan Kaufmann Publishers 14

Single Cycle Implementation

PCSrc
| '
Add u
X
ALU
4 Add result
->
Read —| fee?sier 1 ALUSrc ALU operation
| PC address 9 theaT | MemWrite
ata
— Re@d MemtoReg
Instruction 4 register 2
Write Registers Read P> Address Rdeaig
Instruction register data 2 M
memory l)é
—»| Write
data) Data
Calculate cycle time RegWrite ‘é‘;’t';e memory
assuming negligible
delays except:
16 . 32 MemRead
Sign
. memory (200ps) extend
* ALU and adders
(100ps)
. register file access
(50ps)

©2004 Morgan Kaufmann Publishers 15

Where we are headed

¢ Single Cycle Problems:
— what if we want to reuse hardware (e.g. ALU/Adder) rather than
having two copies?
¢ One Solution:
— use a‘“smaller” cycle time
— have different instructions take different numbers of cycles
— a“multicycle” datapath:

Instruction
register
PC Address

Data \
Register #
Registers | ALUOUL

Register #

Instruction
Memory OF data

Memory

Data data ¢
" register

Register #

©2004 Morgan Kaufmann Publishers 1 6

Summary so far

« Datapath organization
« Datapath control

©2004 Morgan Kaufmann Publishers 1 7

Multicycle Datapath

©2004 Morgan Kaufmann Publishers 18

Multicycle Approach

* We will be reusing functional units
— ALU used to compute address and to increment PC
— Memory used for instruction and data

e Our control signals will not be determined directly by instruction
— e.g., what should the ALU do for a “subtract” instruction?

* We'll use afinite state machine for control

©2004 Morgan Kaufmann Publishers 1 9

Multicycle Approach

« Break up the instructions into steps, each step takes a cycle
— balance the amount of work to be done
— restrict each cycle to use only one major functional unit
¢ Atthe end of acycle
— store values for use in later cycles (easiest thing to do)
— introduce additional “internal” registers

LEL

Read

Address [25-21] register 1 oo
Instruction Read data 1

m
M;e!:ga[a [207151 T_, 0 register 2
Instruction | M Registers
125-0] [|instruction| u | Write " ooy
Write [15-1] | X | o
data Instruction | $———\1

register 5 Write
e data
Instruction M
[15-0] M
LT

Memory 16

data | extend
register \

=

©2004 Morgan Kaufmann Publishers 20

rxcZ o

Instruction Read
| Address [25-21] register 1 Read
Instruction data 1
Read
Memory [20-16]

register 2
MemData

Instruction | _ Registers
[15-0] | |Instruction Write Read
| Write | lps-11) Tegister yata 2
data Instruction |4)
register) Write
data
Instruction M
[15-0] M
B
Memory 16

data
register

©2004 Morgan Kaufmann Publishers 2 1

Instructions from ISA perspective

e Consider each instruction from perspective of ISA.
« Example:

The add instruction changes a register.

Register specified by bits 15:11 of instruction.

Instruction specified by the PC.

New value is the sum (“op”) of two registers.

Registers specified by bits 25:21 and 20:16 of the instruction

Reg[Memory[PC][15:11]] <= Reg[Memory[PC][25:21]] op
Reg[[Memory[PC][20:16]]

In order to accomplish this we must break up the instruction.
(kind of like introducing variables when programming)

©2004 Morgan Kaufmann Publishers 2 2

Breaking down an instruction

¢ |SA definition of arithmetic:

Reg[Memory[PC][15:11]] <= Reg[Memory[PC][25:21]] op
Reg[Memory[PC][20:16]]

¢ Could break down to:

— IR <= Memory[PC]

— A <= Reg[IR[25:21]]

— B <= Reg[IR[20:16]]

— ALUOut <= A op B
Reg[IR[20:16]] <= ALUOut

« We forgot an important part of the definition of arithmetic!
— PC <= PC + 4

©2004 Morgan Kaufmann Publishers 23

Idea behind multicycle approach

« We define each instruction from the ISA perspective (do this!)

« Break it down into steps following our rule that data flows through at
most one major functional unit (e.g., balance work across steps)

« Introduce new registers as needed (e.g, A, B, ALUOut, MDR, etc.)

¢ Finally try and pack as much work into each step
(avoid unnecessary cycles)
while also trying to share steps where possible
(minimizes control, helps to simplify solution)

¢ Result: Our book’s multicycle Implementation!

©2004 Morgan Kaufmann Publishers 24

Five Execution Steps

¢ Instruction Fetch

« Instruction Decode and Register Fetch

« Execution, Memory Address Computation, or Branch Completion
< Memory Access or R-type instruction completion

e Write-back step

INSTRUCTIONS TAKE FROM 3 -5 CYCLES!

©2004 Morgan Kaufmann Publishers 25

Step 1: Instruction Fetch

e Use PCto getinstruction and put it in the Instruction Register.
* Increment the PC by 4 and put the result back in the PC.
e Can be described succinctly using RTL "Register-Transfer Language"

IR <= Memory[PC];
PC <= PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

©2004 Morgan Kaufmann Publishers 2 6

0
M Instruction Read
g | Address [25-21] register 1 Read
1 Instruction Read data 1
Memory [20-16] register 2
MemData Instruction |_ _ Registers
[15-0] | |Instruction e Read
—~| Write [15-11] register data 2
data Instruction |4 .
register) Write
e data
Instruction M
[15-0] 3
B
Memory 16 Sign
data extend
register

©2004 Morgan Kaufmann Publishers 2 7

Step 2: Instruction Decode and Register Fetch

« Read registers rs and rtin case we need them
« Compute the branch address in case the instruction is a branch
e RTL:

A <= Reg[IR[25:21]1:;

B <= Reg[IR[20:16]]1;
ALUOut <= PC + (sign-extend(IR[15:0]) << 2);

< We aren't setting any control lines based on the instruction type
(we are busy "decoding" it in our control logic)

©2004 Morgan Kaufmann Publishers 28

0
M Instruction Read
g | Address [25-21] register 1 Read
1 Instruction Read data 1
Memory [20-16] register 2
MemData Instruction |_ _ Registers
[15-0] | |Instruction e Read
—~| Write [15-11] register data 2
data Instruction |4 .
register) Write
e data
Instruction M
[15-0] 3
B
Memory 16 Sign
data extend
register

©2004 Morgan Kaufmann Publishers 2 9

Step 3 (instruction dependent)

« ALU s performing one of three functions, based on instruction type

< Memory Reference:

ALUOut <= A + sign-extend(IR[15:0]);

¢ R-type:

ALUOut <= A op B;

¢ Branch:

if (A==B) PC <= ALUOut;

©2004 Morgan Kaufmann Publishers 30

“xcZ o

>

Address

Memory
MemData

Write
data

Instruction

Read

[25-21]
Instruction

register 1 ooy

Read

[20-16]

Instruction | _

[15-0]

Instruction | ¢

register

Instruction
[15-0]

Instruction
[15-11]

Memory
data
register

register 2

_ Registers
e
register d'zte:g
Write
data

data1 "]

Sign

extend

©2004 Morgan Kaufmann Publishers 3 1

Step 4 (R-type or memory-access)

¢ Loads and stores access memory

MDR <= Memory[ALUOut];
or
Memory[ALUOut] <= B;

¢ R-typeinstructions finish

Reg[IR[15:11]] <= ALUOut;

The write actually takes place at the end of the cycle on the edge

©2004 Morgan Kaufmann Publishers 32

| Address

“xcZ o

Memory
MemData

—»| Write
data

Instruction

[25-21]
Instruction

[20-16]

Instruction | _

[15-0]

Instruction

[[5-11)

register

Instruction
[15-0]

Instruction

P xcz O

Memory
data
register

16

Read
register 1 ooy N
Read data 1
register 2
Registers

e
register d'z,‘e:g
Write
data

Sign

extend

©2004 Morgan Kaufmann Publishers 33

Write-back step

= Reg[IR[20:16]] <= MDR;

Which instruction needs this?

©2004 Morgan Kaufmann Publishers 34

L
pC M Instruction Read
)L: | Address [25-21] register 1 Read
1 Instruction Read data 1
Memory [20-16] register 2
MemData Instruction |_ Registers
[15-0] | |Instruction e Read
—~| Write . [15-11] register data 2
data Instruction .
register) Write
data
Instruction M
[15-0] u
B
Memory 16 Sign
data extend
register

©2004 Morgan Kaufmann Publishers 35

Summary:

for Riypa Action for mamory- Action for
instruction: reference instructions Jumps.

Instruction fetch IR <= Memory[FC]
PCe=PC+4
Instruction decods, Teglstar fateh & == Reg [IR[25:21]]

B <= Reg [IR[20:16]]
ALUOUL <= FC + {slgrrextend (IR[15:0]) << 2)

Exacution, address computation, | ALUOUL<=Aop B ALUOUL <= A + signextend If (A ==8) PG <= [FC [31:28],
branch Jump complat on {IR[15:0]) PC <= ALLIOUt (IR[26:0]],2'B003}
Memaory accass of Rtype Reg [IR[15:11]] <= Load: MOR <= Memory[ALUCut]
competion ALUout or

Store: Memory [ALUOUT] <= B
Memary read completon Load: Reg[IR[20:16]] <= MDR

FAGURE 5.30 Summary of the steps taken to execute any instruction class. Instructions take from three to five execution steps. The
first twe steps are independent of the instruction class. After these steps, an instruction takes from one to thres more cycles to complete, depending on
the instruction class. The empty entries for the Memory access step or the Memory read completion step indicate that the particular instruction class
takes fewer cycles. In a multicycle implementation, a new instruction will be started as scan as the current instruction completes, so these cycles are
not idle or wasted. As mentioned earlier, the register file actually reads every cycle, but as long as the IR does not change, the values read from the reg-
ister file are identical. In particular, the value read into register B during the Instruction decode stage, for o branch or B-typs instruction, is the same as
the value stored into B during the Exscution stage and then used in the Memory access stage for a store word instruction.

©2004 Morgan Kaufmann Publishers 36

Simple Questions

« How many cycles will it take to execute this code?

Label:

Iw $t2, 0($t3)
Iw $t3, 4($t3)

beq $t2, $t3, Label/

add $t5, $t2, $t3
sw $t5, 8($t3)

< What is going on during the 8th cycle of execution?
¢ In what cycle does the actual addition of $t2 and $t3 takes place?

#assume not

nmuuyoouirrruyyyurur gL

©2004 Morgan Kaufmann Publishers 37

*'J PCWriteCond /\\ PCSource

AR,

MemRead Control

/ \
PCWrite | outputs | ALUOp
lorD | [
ALUSIcB
f
Memwrite | | ALUSreA |
f RegWrite

MemtoReg | [8%]

S lieshat S |
IRWrite \ / RegDst

0
Jump 1 M
address X
[31-0] 2

| Address

1]

3

—
\’\“xcgo

Memory
MemData

| Write
data

26 4‘% 28
| left 2 1

register 1

‘ Instruction [25-0]
[31-26] | —
[25-21]
Instruction
[20-16]
[] 5

Instruction | {

[15-0] | [Instruction| u

MF
Read
s | x| fregister dataz
U

Instruction

data

register) Write
e data
Instruction M
[15-0] Y
|l

Memory __I 1

register 2

Registers
Write

6 (Sign

register

| extend

Instruction [5-0]

Read (0
M
Read data 1 ;LX

PC [31-28]

| ALU |
\ control |

N

—e—| ALUOut

|

©2004 Morgan Kaufmann Publishers 38

Pipeline example: Doing Laundry

©2004 Morgan Kaufmann Publishers 39

Summary

« Datapath control
¢ Multicycle machine

¢ Next Time
— Exam review

* After exam:
— Pipelining (P&H 6.1 -6.3)

©2004 Morgan Kaufmann Publishers 40

