
1

UTCS
CS352, S07

Lecture 7 1

Lecture 7: Instruction Set Architectures - IV

• Announcements:
– Readings for today: 3.2 (int), 3.6 (float), B.9 (memory)
– EXTENSION ON HW #2 – Now due Feb 20.

• Last Time
– Graphics processor ISA
– Naming Storage
– Various kinds of register storage
– Alignment

• Today
– Quick review
– Memory addressing (cont’d)

UTCS
CS352, S07

Lecture 7 2

Last Lecture - Naming Storage in ISAs

• Memory
– Addresses in instruction
– Addresses computed by instructions

• General Registers
– Operands to instructions

• Special registers
– Status, condition codes, floating-point codes
– Operands to special instructions



2

UTCS
CS352, S07

Lecture 7 3

Last Lecture – ISA Variety

• Graphics processor instruction set
• Various register organizations:

– Accumulator, Index, General Registers, Stack machines

UTCS
CS352, S07

Lecture 7 4

Memory Organization



3

UTCS
CS352, S07

Lecture 7 5

Memory Organization

• Four components specified by ISA:

– Smallest addressable unit of memory
(byte? halfword? word?)

– Maximum addressable units of memory (doubleword?)

– Alignment

– Endianness

• Already talked about addressing modes last time

UTCS
CS352, S07

Lecture 7 6

Alignment

• Some architectures restrict addresses that can 
be used for particular size data transfers!
– Bytes accessed at any address

– Halfwords only at even addresses

– Words accessed only at multiples of 4

0x10000x1004

unaligned word access



4

UTCS
CS352, S07

Lecture 7 7

Endianness

• How are bytes ordered within a word?
– Little Endian (Intel/DEC)

– Big Endian (IBM/Motorola)

– Today - most machines can do either (configuration 
register)

0x1000 0x1001 0x1002 0x1003

LSBMSB

0x10000x10010x10020x1003

MSB LSB

UTCS
CS352, S07

Lecture 7 8

Data Types



5

UTCS
CS352, S07

Lecture 7 9

Data Types

• How the contents of 
memory and registers are 
interpreted

• Can be identified by 
– Tag (data itself)
– Use (instructions)

• Driven by application
– Signal processing

• 16-bit fixed point 
(fraction)

– Text processing
• 8-bit characters

– Scientific computing
• 64-bit floating point

• Most general purpose
computers support several 
types
– 8, 16, 32, 64-bit 
– signed and unsigned
– fixed and floating

0x8a1cint

“abcd”str

Examples of tags (ie. Symbolics machine)

UTCS
CS352, S07

Lecture 7 10

Example: 32-bit Floating Point

• Type specifies mapping 
from bits to real numbers 
(plus symbols)
– format

• S, 8-bit exp, 23-bit 
mantissa

– interpretation
• mapping from bits to 

abstract set

– operations
• add, mult, sub, sqrt, div

mantissaexps
2381

v MS E= − × ×−( ) .( )1 2 1127



6

UTCS
CS352, S07

Lecture 7 11

Exceptions

UTCS
CS352, S07

Lecture 7 12

Control - Exceptions/Events

• Implied branch after every 
instruction
– Internal events

(called faults or exceptions)

• arithmetic overflow
• page fault

– External events
(called interrupts)

• completion of I/O operations

• What happens????
– Save PC (in special register)
– Jump to exception address

(taken from table)
– When done: Jump to original PC + 4

Inst 1

Inst 2

P
ag

e 
Fl

t

D
is

k 
I/O

R
TC

O
ve

rfl
ow



7

UTCS
CS352, S07

Lecture 7 13

General ISA design principles

UTCS
CS352, S07

Lecture 7 14

Principles of Instruction Set Design

• Keep it simple (KISS)
– complexity

• increases logic area
• increases pipe stages
• increases development time

– evolution tends to make 
kludges

• Orthogonality (modularity)
– simple rules, few exceptions
– all ops on all registers

Data Types

O
pe

ra
tio

ns

Add Modes

Form
ats

Regs

• Frequency
– make the common case 

fast
• some instructions 

(cases) are more 
important than others

0%

10%

20%

30%

40%

50%

60%

INT LOAD STORE JMP FLOAT



8

UTCS
CS352, S07

Lecture 7 15

Principles of Instruction Set Design (part 2)

• Generality
– not all problems need the 

same 
features/instructions

– principle of least surprise
– performance should be 

easy to predict

• Cost effectiveness
– design ISA to permit 

efficient implementation
• today
• 10 years from now

vs

F D R E W
F D R E W

F D R E W
F D R E W

UTCS
CS352, S07

Lecture 7 16

CISC vs RISC

• What is a RISC? 
(Reduced Instruction Set Computer)
– no firm definition
– generally includes

• general registers
• fixed 3-address instruction 

format
• strict load-store 

architecture
• simple addressing modes
• simple instructions

– Examples
• DEC Alpha
• MIPS

– Advantages
• good compiler target
• easy to implement/pipeline

• CISC (Complex Instruction-Set 
Computer)
– CISC ≡ ¬RISC
– may include

• variable length instructions
• memory-register 

instructions
• complex addressing modes
• complex instructions

– CALLP, EDIT, …
– Examples

• DEC VAX, IBM 370, x86
– Advantages

• better code density
• legacy software



9

UTCS
CS352, S07

Lecture 7 17

Compilers

Performance = application +
compiler +
hardware

UTCS
CS352, S07

Lecture 7 18

Role of the Optimizing Compiler

Front End 
(Language Specific)

Code Generator

High-Level Optimizations 

Global Optimizations

C source code

Machine binary code

IR

IR

Machine-IR

Procedure Inlining
Loop Transformations

Common SubExp Elim.
Code Motion

Instruction Scheduling
Register Allocation
Machine Dependent

HW/SW 
complexity 
tradeoffs



10

UTCS
CS352, S07

Lecture 7 19

Example: Loop Optimization

LW  R1, X
ADD R2,R0,R0
ADD R3,R0,R0

LOOP: LW  R4,R1
ADD R3,R3,R4
ADD R1,R1,#4
ADD R2,R2,#1
SLT R5,R2,#MAX
BNEZ R5,LOOP

CONT:

LW  R1, X
ADD R2,R0,#MAX
SLLI R2,R2,#2
ADD R2,R1,R2
ADD R3,R0,R0

LOOP: LW  R4,R1
ADD R3,R3,R4
ADD R1,R1,#4
SLT R5,R1,R2
BNEZ R5,LOOP

CONT:

LW  R1, X
ADD R2,R0,R0
ADD R3,R0,R0

LOOP: SLT R5,R2,#MAX
BEQZ R5,CONT 
LW  R4,R1
ADD R3,R3,R4
ADD R1,R1,#4
ADD R2,R2,#1
J LOOP

CONT:

sum=0;
for(i=0;i<max;i++)

sum+=x[i];

Loop Reordering Induction Variable
Analysis

7 5

6

UTCS
CS352, S07

Lecture 7 20

Architect can help Compiler Writer

• Simplify, Simplify, Simplify
– Feature difficult to use, it won’t be used….Less is More!

• Regularity
– Common set of formats, few special cases

• Primitive, not solutions
– CALLS   vs.  Fast register moves

• Make performance tradeoffs simple

• Ultimately, the ISA will *not* be perfect



11

UTCS
CS352, S07

Lecture 7 21

Compiler can help Microarchitecture

• Instruction Scheduling
– Instruction Level Parallelism

• Resource Allocation
– Registers  (minimize spills/restores to and from memory)

• Memory optimizations
– Cache conscious data organization
– Code layout

• Etc…...

UTCS
CS352, S07

Lecture 7 22

Summary of first part of lecture

• ISA principles
• Compiler/ISA interaction

• Next Time
– Simple processor datapath
– Reading assignment – P&H 5.1-5.4



12

UTCS
CS352, S07

Lecture 7 23

On blackboard:
Begin discussing implementation of MIPS 

architecture

1) What parts are available to us?
2) What does the machine need to do?

(For three major types of instruction)


