
1

UTCS
CS352, S07

Lecture 5 1

Lecture 5: Instruction Set Architectures - II

• Announcements
– Homework #1 due now
– HW #2 handout, and online
– Optional pair programming for HW #2

• Last Time
– Introduction to ISAs

• Today
– Instruction types
– Memory operations
– Control flow operations
– Instruction formats
– Case study ISAs – MIPS, others

UTCS
CS352, S07

Lecture 5 2

Pair Programming

• Two-person programming teams
• Work side-by-side

– One person “drives” (types the code)
– Other person watches, thinks, and makes suggestions
– Two brains are better than one

• One grade per team
• Pick your own partner

– Find someone with similar skill level as you
– And a compatible schedule
– OK to change after this assignment

• Issues to be aware of:
– Both partners must learn; take turns driving
– It takes time to get used to this programming method

2

UTCS
CS352, S07

Lecture 5 3

ISA is an interface (abstraction layer)

ISA

Program 1 Program 2 Program 3

Hardware 1 Hardware 2 Hardware 3

UTCS
CS352, S07

Lecture 5 4

A typical ISA machine model

Registers ALU

Control and
Instruction Pointer (PC)

Memory

3

UTCS
CS352, S07

Lecture 5 5

Architecture vs. Implementation

• Architecture: defines what a computer
system does in response to a program and a
set of data
– Programmer visible elements of computer

system

• Implementation: defines how a computer
does it
– Sequence of steps to complete operations
– Time to execute each operation
– Hidden “bookkeeping” functions

UTCS
CS352, S07

Lecture 5 6

Components of Instructions

• Operations (opcodes)
• Number of operands
• Operand specifiers

• Instruction encodings
• Instruction classes

– ALU ops (add, sub, shift)
– Branch (beq, bne, etc.)
– Memory (ld/st)

add r1,r2,r3

src2 dstopcode src1

4

UTCS
CS352, S07

Lecture 5 7

What about Java and JVM?

ISA

Program 1 Program 2 Program 3

Hardware 1 Hardware 2 Hardware 3

JVM is an additional interface layer between program and hardware ISA.
Microsoft’s .NET common language runtime (CLR) has this same role.

Java bytecode
Interpreter or
JIT compiler

UTCS
CS352, S07

Lecture 5 8

ISAs in Detail

5

UTCS
CS352, S07

Lecture 5 9

Instruction Types

• ALU Operations
– arithmetic (add, sub, mult, div)
– logical (and, or, xor, srl, sra)
– data type conversions (cvtf2d, cvtf2i)

• Data Movement
– memory reference (lb, lw, sb, sw)
– register to register (movi2fp, movf)

• Control - what instruction to do next
– tests/compare (slt, seq)
– branches and jumps (beq, bne, j, jr)
– support for procedure call (jal, jalr)
– operating system entry (trap)

• Hair - string compare!

UTCS
CS352, S07

Lecture 5 10

Addressing Modes
Driven by Program Usage

double x[100] ; // global
void foo(int a) { // argument
int j ; // local
for(j=0;j<10;j++)

x[j] = 3 + a*x[j-1] ;
bar(a);

}

Memory

foo

Stack

j
a

bar

xprocedure

constant argument

array reference

6

UTCS
CS352, S07

Lecture 5 11

Assembly language example

double x[100] ;

void foo(int a) {

int j;
for(j=0;j<10;j++)

x[j] = 3 + a*x[j-1];

bar(a);
}

UTCS
CS352, S07

Lecture 5 12

Addressing Modes

• Stack relative for locals
and arguments

a, j: *(R30+x)

• Short immediates (small
constants)

3
• Long immediates (global

addressing)
&x[0], &bar: 0x3ac1e400

• Indexed for array
references

*(R4+R3)

Memory

foo

Stack

j
a

bar

x

SP

7

UTCS
CS352, S07

Lecture 5 13

Addressing Mode Summary

#n immediate
(0x1000) absolute
Rn Register
(Rn) Register indirect

-(Rn) predecrement
(Rn)+ postincrement

*(Rn) Memory indirect
*(Rn)+ postincrement
d(Rn) Displacement (b,w,l)
d(Rn)[Rx]Scaled

VAX 11 had 27 addressing modes (why?)

UTCS
CS352, S07

Lecture 5 14

Control Instructions

• Implicit control on each
instruction

PC ← PC + 4
• Unconditional jumps

PC ← X (direct)
PC ← PC + X (PC relative)
X can be constant or

register
• Conditional jumps (branches)

PC ← PC + ((cond) ? X : 4)
• Predicated instructions
• Conditions

– flags
– in a register
– fused compare and branch

LOOP: LOAD R1 <- (R5+R2)
ADD R3 <- R3 + R1
ADD R2 <- R2 + 4
CMP R4 <- R2 == 8
JNE R4, LOOP

8

UTCS
CS352, S07

Lecture 5 15

Conditional Branching

• Compute condition first
– Condition codes
CMP R1, R2
BGE LOOP

• Forces CMP and BR to be adjacent
– Condition in GP register
CMP R3, R1, R2
BGE R3, LOOP

• Enables parallelism of comparisons
– Condition in “condition” register

• Fuse condition check and branch
BGE R1, R2, LOOP
– reduces instruction count, but complicates pipelining

Z N C O

ze
ro

ne
ga

tiv
e

ca
rr

y

ov
er

flo
w

R3 ZNCO

C0C1C2Cn

UTCS
CS352, S07

Lecture 5 16

Support for Procedures

• Branch and Link
– store return address in reg and jump

JALR Rdest: Rx ← PC + 4, PC ← Dest

• Subroutine call
– push return address on stack and jump

• CALLP (VAX)
– push return address
– set up stack frame
– save registers
– ...

JAL foo

foo

Return Here
PC

9

UTCS
CS352, S07

Lecture 5 17

Instruction Formats

• Different instructions
need to specify different
information
– return
– increment R1
– R3 ← R1 + R2
– jump to 64-bit address

• Frequency varies
– instructions
– constants
– registers

• Can encode
– fixed format
– small number of formats
– byte/bit variable

Op RS1 RS2 RD func
6 5 55 11

Op RS1 RD Const
6 5 5 16

Op Const
6 26

Fixed-Format (MIPS)

I: ld/st, rd ← rs1 op imm, branch

R: rd ← rs1 op rs2

J: j, jal

UTCS
CS352, S07

Lecture 5 18

Variable-Length Instructions

• Variable-length
instructions give more
efficient encodings
– no bits to represent

unused fields/operands
– can frequency code

operations, operands, and
addressing modes

– Examples
• VAX-11, Intel x86

(byte variable)
• Intel 432 (bit variable)

• But - can make fast
implementation difficult
– sequential determination

of location of each
operand

Op

Op
8

8
R M
4 4

R M
4 4

R M
4 4

Op
8

R M
4 4

Op
8

R M
4 4

Disp
32

VAX instrs: 1-53 bytes!

10

UTCS
CS352, S07

Lecture 5 19

Compromise: A Few Good Formats

• Gives much better code
density than fixed-format
– important for embedded

processors
• Simple to decode
• Examples:

– ARM Thumb, MIPS 16

• Another approach
– On-the fly instruction

decompression (IBM
CodePack)

Op R1 R2 R3 Const
6 5 55 101

Op R1 R2
6 5 5

Op R1 R2 R3
4 4 44

UTCS
CS352, S07

Lecture 5 20

Constant Encoding

• Integer constants
– mostly small
– positive or negative

• Bit fields
– contiguous field of 1s

within 32bits (64 bits)
• Other

– addresses, characters,
symbols

• A good architecture
– uses a few bits to encode

the most common.
– allows any constant to be

generated (table
reference)

Op
6 VAX short literal

-32 to 31

E
5

S
5

00000001111111111000000000000000

Symbolics 3600
Bit Fields

11

UTCS
CS352, S07

Lecture 5 21

MIPS ISA

UTCS
CS352, S07

Lecture 5 22

MIPS ISA

• 32 GP Integer registers (R0-31) – 32 bits each
– R0=0, other registers governed by conventions (SP, FP, RA, etc.)

• 32 FP registers (F0-F31)
– 16 double-precision (use adjacent 32-bit registers)

• 8, 16, and 32 bit integer data types
• Load/Store architecture (no memory operations in ALU ops)
• Simple addressing modes

– Immediate R1 ← 0x23
– Displacement R2 ← d(Rx) ….. 0(R3), 0x1000(R0)

• Simple fixed instruction format (3 types), 90 instructions
• Fused compare and branch
• “ISA” has pseudo instruction that are synthesized into simple

sequences (ie. rotate left rol = combination of shift and mask)
• Designed for fast hardware (pipelining) + optimizing compilers

12

UTCS
CS352, S07

Lecture 5 23

MIPS ISA (a visual)

R0

R31

PC

R1

F0 F1
F2 F3

F30 F31

Op RS1 RS2 RD func
6 5 55 11

Op RS1 RD Const
6 5 5 16

Op Const
6 26

Fixed-Format

I: ld/st, rd ← rs1 op imm, branch

R: rd ← rs1 op rs2

J: j, jal

UTCS
CS352, S07

Lecture 5 24

0 zero constant 0

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . . (callee can clobber)

15 t7

MIPS: Software conventions for Registers

16 s0 callee saves

. . . (caller can clobber)

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp Pointer to global area

29 sp Stack pointer

30 fp frame pointer

31 ra Return Address (HW)

Plus a 3-deep stack of mode bits.

13

UTCS
CS352, S07

Lecture 5 25

MIPS arithmetic instructions
Instruction Example Meaning Comments
add add $1,$2,$3 $1 = $2 + $3 3 operands; exception possible
subtract sub $1,$2,$3 $1 = $2 – $3 3 operands; exception possible
add immediate addi $1,$2,100 $1 = $2 + 100 + constant; exception possible
add unsigned addu $1,$2,$3 $1 = $2 + $3 3 operands; no exceptions
subtract unsigned subu $1,$2,$3 $1 = $2 – $3 3 operands; no exceptions
add imm. unsign. addiu $1,$2,100 $1 = $2 + 100 + constant; no exceptions
multiply mult $2,$3 Hi, Lo = $2 x $3 64-bit signed product
multiply unsigned multu$2,$3 Hi, Lo = $2 x $3 64-bit unsigned product
divide div $2,$3 Lo = $2 ÷ $3, Lo = quotient, Hi = remainder

Hi = $2 mod $3
divide unsigned divu $2,$3 Lo = $2 ÷ $3, Unsigned quotient & remainder

Hi = $2 mod $3
Move from Hi mfhi $1 $1 = Hi Used to get copy of Hi
Move from Lo mflo $1 $1 = Lo Used to get copy of Lo

Which add for address arithmetic? Which add for integers?

UTCS
CS352, S07

Lecture 5 26

Conversion of 16 bit immediates to 32 bits

ADD R1 R2 -3
6 5 5 16

ADD R2, R1, -3

1111111111111101

-3 32 bits

11111111111111111111111111111101

replicate

3

0000000000000011

3

00000000000000000000000000000011

replicate

This is called “sign extension”

14

UTCS
CS352, S07

Lecture 5 27

Multiply / Divide

• Perform integer multiply, divide
– MULT rs, rt
– MULTU rs, rt
– DIV rs, rt
– DIVU rs, rt

• Move result from multiply, divide
– MFHI rd
– MFLO rd

• Move to HI or LO
– MTHI rd
– MTLO rd

General
Registers

HI LO

UTCS
CS352, S07

Lecture 5 28

MIPS logical instructions

Instruction Example Meaning Comment
and and $1,$2,$3 $1 = $2 & $3 3 reg. operands; Logical AND
or or $1,$2,$3 $1 = $2 | $3 3 reg. operands; Logical OR
xor xor $1,$2,$3 $1 = $2 Å $3 3 reg. operands; Logical XOR
nor nor $1,$2,$3 $1 = ~($2 |$3) 3 reg. operands; Logical NOR
and immediate andi $1,$2,10 $1 = $2 & 10 Logical AND reg, constant
or immediate ori $1,$2,10 $1 = $2 | 10 Logical OR reg, constant
xor immediate xori $1, $2,10 $1 = ~$2 &~10 Logical XOR reg, constant
shift left logical sll $1,$2,10 $1 = $2 << 10 Shift left by constant
shift right logical srl $1,$2,10 $1 = $2 >> 10 Shift right by constant
shift right arithm. sra $1,$2,10 $1 = $2 >> 10 Shift right (sign extend)
shift left logical sllv $1,$2,$3 $1 = $2 << $3 Shift left by variable
shift right logical srlv $1,$2, $3 $1 = $2 >> $3 Shift right by variable
shift right arithm. srav $1,$2, $3 $1 = $2 >> $3 Shift right arith. by variable

15

UTCS
CS352, S07

Lecture 5 29

MIPS data transfer instructions

Instruction Comment
SW 500(R4), R3 Store word
SH 502(R2), R3 Store half
SB 41(R3), R2 Store byte

LW R1, 30(R2) Load word
LH R1, 40(R3) Load halfword
LHU R1, 40(R3) Load halfword unsigned
LB R1, 40(R3) Load byte
LBU R1, 40(R3) Load byte unsigned

LUI R1, 40 Load Upper Immediate (16 bits shifted left by 16)

Why need LUI?
0000 … 0000

LUI R5

R5

UTCS
CS352, S07

Lecture 5 30

MIPS Compare and Branch

• Compare and Branch
– BEQ rs, rt, offset if R[rs] == R[rt] then PC-relative branch
– BNE rs, rt, offset <>

• Compare to zero and Branch
– BLEZ rs, offset if R[rs] <= 0 then PC-relative branch
– BGTZ rs, offset >
– BLT <
– BGEZ >=
– BLTZAL rs, offset if R[rs] < 0 then branch and link (into R 31)
– BGEZAL >=

• Remaining set of compare and branch take two
instructions

• Almost all comparisons are against zero!

16

UTCS
CS352, S07

Lecture 5 31

MIPS jump, branch, compare instructions

Instruction Example Meaning
branch on equal beq $1,$2,100 if ($1 == $2) go to PC+4+100

Equal test; PC relative branch
branch on not eq. bne $1,$2,100 if ($1!= $2) go to PC+4+100

Not equal test; PC relative
set on less than slt $1,$2,$3 if ($2 < $3) $1=1; else $1=0

Compare less than; 2’s comp.
set less than imm. slti $1,$2,100 if ($2 < 100) $1=1; else $1=0

Compare < constant; 2’s comp.
set less than uns. sltu $1,$2,$3 if ($2 < $3) $1=1; else $1=0

Compare less than; natural numbers
set l. t. imm. uns. sltiu $1,$2,100 if ($2 < 100) $1=1; else $1=0

Compare < constant; natural numbers
jump j 10000 go to 10000

Jump to target address
jump register jr $31 go to $31

For switch, procedure return
jump and link jal 10000 $31 = PC + 4; go to 10000

For procedure call

UTCS
CS352, S07

Lecture 5 32

Details of the MIPS instruction set

• Register zero always has the value zero (even if you try to write it)
• Branch/jump and link put the return addr. PC+4 into the link register

(R31)
• All instructions change all 32 bits of the destination register (including

lui, lb, lh) and all read all 32 bits of sources (add, sub, and, or, …)
• Immediate arithmetic and logical instructions are extended as follows:

– logical immediates ops are zero extended to 32 bits
– arithmetic immediates ops are sign extended to 32 bits (including addu)

• The data loaded by the instructions lb and lh are extended as follows:
– lbu, lhu are zero extended
– lb, lh are sign extended

• Overflow can occur in these arithmetic and logical instructions:
– add, sub, addi

• It cannot occur in
– addu, subu, addiu, and, or, xor, nor, shifts, mult, multu, div, divu

17

UTCS
CS352, S07

Lecture 5 33

Summary

• ISA: memory and instructions
• MIPS as an example

– Read more details in Appendix A

• Next Time
– Graphics processor as another ISA example
– ISA design principles
– Interaction between the ISA and the compiler

• Reading assignment – Chapter 2.7 - 2.19

