
1

UTCS Lecture 1 1

CS 352: Computer Systems Architecture

Lecture 1:
What is Computer Architecture?

January 16, 2007

William R. Mark
Computer Sciences Department
University of Texas at Austin

billmark@cs.utexas.edu

UTCS Lecture 1 2

Questions we’ll address in this course

• How do we separate software from hardware?
– So that new computers can run old software

• How is computer hardware organized?
– Processor, Memory, I/O, etc.

• How is the processor organized? Why?

• How do we measure computer performance?

• How do we think about concurrent programming?
– Doing more than one thing at once

2

UTCS Lecture 1 3

Logistics

Lectures T/Th 9:30-11:00, RAS 213
Instructor Prof. William R. Mark
TA Juhyun Lee

Grading Final Exam 1 35%
Midterm Exam 1 25%
Homework ~7 15%
Project 1 25%

Text Hennessy & Patterson, Computer
Organization and Design (Third Edition)

UTCS Lecture 1 4

CS352 Online

URL: www.cs.utexas.edu/~billmark/
teach/cs352-07-spring

email list: cs352-mark@cs.utexas.edu

subscribe by sending email to TA
(mandatory – see web page for details)

Computer Architecture Seminar Series:
www.cs.utexas.edu/users/cart/arch

3

UTCS Lecture 1 5

Why might this course be useful?

UTCS Lecture 1 6

Some reasons you might care

First, the obvious possibilities…

• You become a CPU architect
– Unlikely for most of you!

• You design other computer hardware
– The basic concepts and techniques are the same

• You design compilers, OS’s, Java runtimes, etc.
– These interact with computer hardware

4

UTCS Lecture 1 7

Less obvious (but more likely) reasons

• You write software
– And care if it runs fast
– And care if it is secure

• You design any kind of complex system
– Design tradeoffs
– System interfaces
– Quantitative analysis of performance, cost, etc.

• You want to purchase a fast computer
– And want to be an informed consumer

• You are curious about how computers work
– Perhaps the best reason

UTCS Lecture 1 8

Specification

Program

ISA (Instruction Set Architecture)

microArchitecture

Logic

Transistors

Physics/Chemistry

compute the fibonacci sequence

for(i=2; i<100; i++) {
a[i] = a[i-1]+a[i-2];}

load r1, a[i];
add r2, r2, r1;

A

B F

R1
R2

ADD

I = C dV/dt

EE 316

CS 310,
CS 352

CS 352

5

UTCS Lecture 1 9

CS352 Topics

• Underlying technology trends
• Instruction set architectures
• Microarchitecture

– Pipelining
– Instruction level parallelism

• Cache memory systems
• Virtual memory
• I/O
• Multiprocessors and parallelism
• Security
• Computer system implementation

UTCS Lecture 1 10

What is Computer Architecture?

Technology

Applications Computer
Architect

Interfaces

Machine Organization

Measurement &
Evaluation

IS
A

A
PI

Li
nk

I/O
 C

ha
n

Regs

IR

6

UTCS Lecture 1 11

How to design something:

• List goals
• List constraints
• Generate ideas for possible designs
• Evaluate the different designs
• Pick the best design
• Refine it

In reality, this process is iterative.
As constraints change, best design will change too.
[Use kitchen remodel as example of design process]

UTCS Lecture 1 12

Design goals for an architecture

7

UTCS Lecture 1 13

Design goals for an architecture

• High performance
– Computation
– Storage capacity
– Communication speed

• Low cost
– To manufacture, AND to design.

• Easy to program
• Compatibility and Longetivity

– Run existing programs – fast today, faster tomorrow.
• Security and Reliability
• Low power consumption

– For laptops, cell phones, etc.
– Even for desktop CPUs!

UTCS Lecture 1 14

Possible design constraints for architecture

8

UTCS Lecture 1 15

Possible design constraints for architecture

• Maximum cost
• Maximum power consumption
• Backward compatibility
• Time to market
• Etc.

UTCS Lecture 1 16

Technology Constraints

• Yearly improvement
– Semiconductor technology

• 60% more devices per
chip
(doubles every 18 months)

• 15% faster devices
(doubles every 5 years)

• Slower wires
– Magnetic Disks

• 60% increase in density
– Circuit boards

• 5% increase in wire
density

– Cables
• no change

1998

1995

1992

1989

100x more devices since 1989
8x faster devices

2002

9

UTCS Lecture 1 17

Changing Technology leads to
Changing Architecture

• 1970s
– multi-chip CPUs
– semiconductor memory

very expensive
– microcoded control
– complex instruction sets

(good code density)
• 1980s

– single-chip CPUs, on-chip
RAM feasible

– simple, hard-wired control
– simple instruction sets
– small on-chip caches

• 1990s
– lots of transistors
– complex control to exploit

instruction-level
parallelism

• 2000s
– even more transistors
– slow wires
– multi-core chips

UTCS Lecture 1 18

Intel 4004 - 1971

• The first
microprocessor

• 2,300 transistors
• 108 KHz
• 10µm process

10

UTCS Lecture 1 19

Intel Core 2 Duo - 2006

• “State of the art”

• 291 million transistors

• 3 GHz

• 0.065 µm (65 nm) process

• Could fit ~100,000 4004s
on this chip!

UTCS Lecture 1 20

Many kinds of systems and applications

• Personal:
– Desktop, Laptop
– Cell phone / PDA
– Game machine

• Server:
– Web servers
– Transaction processing

• Engineering/Scientific:
– Weather simulation
– Drug design

• Embedded Control:
– Anti-lock brake system
– Microwave oven

11

UTCS Lecture 1 21

What is an “interface”

• Interfaces are visible,
Implementations aren’t
– Same interface can have multiple implementations
– We allow performance (time behavior) to change!

• Example interfaces:
– Ethernet connector / protocol
– X86 architecture
– Java language

• Example NON-interfaces
– Power connector for cell phone charger

• Good interfaces are simple

UTCS Lecture 1 22

Several kinds of interfaces

• Between system layers
– Programming language
– API
– ISA

• Between modules
– Network protocol (Ethernet)
– I/O channel or bus (SCSI or PCI)

• Standard representations
– ASCII
– IEEE floating-point

12

UTCS Lecture 1 23

Instruction-Set Architecture

• Software impact
– support OS functions

• restartable instructions
• memory relocation and

protection
– a good compiler target

• simple
• orthogonal

– dense
• Hardware impact

– admits efficient implementation
• across generations

– admits parallel implementation
• no ‘serial’ bottlenecks

• Abstraction without
interpretation

OP R1 R2 R3 imm

OP R1M1 im2R2M2

R3M3 im2 ...

Hardware/Software Interface

UTCS Lecture 1 24

System-Level Organization

• Design at the level of
processors, memories, and
interconnect.

• More important to application
performance than CPU design

• Feeds and speeds
– constrained by IC pin count,

module pin count, and signaling
rates

• System balance
– for a particular application

• Driven by
– performance/cost goals
– available components

(cost/perf)
– technology constraints

P

MC

800MHz
4-way Issue

16Bytes x
200MHz

I/O

M M M M

Disk

Net

Display

13

UTCS Lecture 1 25

Microarchitecture

• Register-transfer-level (RTL)
design

• Implement instruction set
• Exploit capabilities of technology

– locality and concurrency
• Iterative process

– generate proposed architecture
– estimate cost
– measure performance

• Current emphasis is on overcoming
sequential nature of programs
– deep pipelining
– multiple issue
– dynamic scheduling
– branch prediction/speculation

Regs

Instr.
Cache

IR

P
C

B
A

C

UTCS Lecture 1 26

The Architecture Process

New concepts created

Estimate
Cost &

Performance
Sort

Good
ideasMediocre ideasBad ideas

14

UTCS Lecture 1 27

Performance Measurement and Evaluation

• CPU execution time
– by instruction or sequence

• floating point
• integer
• branch performance

• Cache bandwidth
• Main memory bandwidth
• I/O performance

– bandwidth
– seeks
– pixels or polygons per second

• Relative importance depends
on applications

P

$

M

Many Dimensions to Performance

UTCS Lecture 1 28

Evaluation Tools

• Benchmarks, traces, & mixes
– macrobenchmarks & suites

• application execution time
– microbenchmarks

• measure one aspect of
performance

– traces
• replay recorded accesses
• cache, branch, register

• Simulation at many levels
– ISA, cycle accurate, RTL, gate,

circuit
• trade fidelity for simulation rate

• Area and delay estimation
• Analysis

– e.g., queuing theory

MOVE 39%
BR 20%
LOAD 20%
STORE 10%
ALU 11%

LD 5EA3
ST 31FF
….
LD 1EA2
….

15

UTCS Lecture 1 29

Don’t forget the simple view

All a computer does is
– Store and move data
– Communicate with the external world
– Do these two things conditionally
– According to a recipe specified by a programmer

It’s complex because
– We want it to be fast
– We want it to be reliable and secure
– We want it to be simple to use
– It must obey the laws of physics

UTCS Lecture 1 30

Next Time

• Evaluation of Systems
– Performance

• Amdahl’s Law, CPI
– Cost

• Computer system elements
– Transistors and wires

• Reading assignment
– P&H Chapter 1

