
1

UTCS
CS352, S05

Lecture 20 1

Lecture 15: Virtual Memory

• Administrative
– HW #6 handed out (due in one week)
– Start finding partners for final project

• Last Time:
– Cache wrap-up
– Virtual memory motivation

• Today
– Virtual memory implementations

UTCS
CS352, S05

Lecture 20 2

Physical Memory Addressing

CPU Cache

LW R1,0(R2)

address
32 bits 32 bits

tag ind off

DRAM
256MB

28 bits

2

UTCS
CS352, S05

Lecture 20 3

Webster’s definition of “virtual”

Pronunciation: 'v&r-ch&-w&l, -ch&l; 'v&rch-w&l
Function: adjective
Etymology: Middle English, possessed of certain physical virtues,
from Medieval Latin virtualis, from Latin virtus strength, virtue

1 : being such in essence or effect though not formally
recognized or admitted <a virtual dictator>

2 : of, relating to, or using virtual memory

3 : of, relating to, or being a hypothetical particle whose
existence is inferred from indirect evidence <virtual photons>

UTCS
CS352, S05

Lecture 20 4

The goal of virtual memory

• Make it appear as if each process has:
– It’s own private memory
– The memory is nearly infinite in size

• The challenge... Physical memory is:
– Limited in size
– Shared by all of the processes running on the machine

• The job of the virtual memory system is to
maintain the illusion we want, given the physical
limitations.

3

UTCS
CS352, S05

Lecture 20 5

What if?

• A program is loaded into different places
in memory each time it runs?
– Relocation

• A program wants to use more memory than
physically exists?
– Page to disk

• We want to switch between multiple
programs that use different data?
– Protection

UTCS
CS352, S05

Lecture 20 6

Simple View of Memory

• Single program runs at a
time

• Code and static data are at
fixed locations
– code starts at fixed

location, e.g., 0x100
– subroutines may be at

fixed locations (absolute
jumps)

• data locations may be wired
into code

• Stack accesses relative to
stack pointer.

PC

R1

R31
...

Code

Data

Stack

4

UTCS
CS352, S05

Lecture 20 7

Running Two Programs (Relocation)
No Protection

• Need to relocate logical
addresses to physical
locations

• Stack is already relocatable
– all accesses relative to SP

• Code can be made relocatable
– allow only relative jumps
– all accesses relative to PC

• Data segment
– can calculate all addresses

relative to a DP
• expensive

– faster with hardware support
• base register

PC

R1

R31
...

Code

Data

Stack

Code

Data

Stack

PC

R1

R31
...

UTCS
CS352, S05

Lecture 20 8

Can you think of a simpler strategy?

PC

R1

R31
...

Code

Data

Stack

Code

Data

Stack

PC

R1

R31
...

5

UTCS
CS352, S05

Lecture 20 9

Base Register Addressing

Code

Data

Stack

Code

Data

Stack

Base 0

Base 1

Sys Code
Sys Table

System code handles
switching between programs

System table contains:

- Base address of each
program

- Saved state of non-running
programs

UTCS
CS352, S05

Lecture 20 10

Implement base register with extra adder

• Add a single base register,
BR, to hardware

• Base register loaded with
data pointer (DP) for
current program

• All data addresses added
to base before accessing
memory
– Can relocate code too

• Often implemented with a
three-input adder

• Need to bypass base
register to access system
tables for program
switching
– a place to stand

Logical Address Base (DP)

Logical Address

6

UTCS
CS352, S05

Lecture 20 11

Providing Protection Between Programs
(Length Registers)

• Add a Length Register LR to
the hardware

• A program is only allowed to
access memory from BR to
BR+Length-1

• A program cannot set BR or
LR
– they are privileged registers

• But how do we switch
programs?

Code

Data

Stack

Code

Data

Stack

Base 0

Base 1

Sys Code
Sys Table

Length 0 +

Length 1 +

UTCS
CS352, S05

Lecture 20 12

Base + Length Addressing

Logical Address Base

Logical Address

Length

<

Allowed

Privileged Registers

7

UTCS
CS352, S05

Lecture 20 13

What a mess!

• Is there a better way that:
– Simplifies protection
– Enables relocation
– Extends the physical memory capacity

UTCS
CS352, S05

Lecture 20 14

A Load to Virtual Memory

• Translate from virtual space to physical space
– VA ⇒ PA
– May need to go to disk

CPU Cache DRAM
64MB

LW R1,0(R2)

Virtual Addr.

32 bits

21 bits

T
ra

ns
la

te

Physical Addr.

26 bits

8

UTCS
CS352, S05

Lecture 20 15

A Load to Virtual Memory

• Both programs can use the same set of addresses!
– Change translation tables to point same VA to different PA for

different programs

CPU Cache DRAM
64MB

LW R1,0(R2)

Virtual Addr.

32 bits

21 bits

T
ra

ns
la

te
Physical Addr.

26 bits

Process 1

Process 2
T

ra
ns

la
te

T
ra

ns
la

te

UTCS
CS352, S05

Lecture 20 16

Paging and Protection

• How to ensure that processes can’t access each
other’s data
– Put them in separate virtual address spaces
– Control the mappings of VA to PA for each process

• Separate page tables
• How can you share data between processes

– Give them each a VA mapping to the same PA
• Similar entry in each process’ page table

9

UTCS
CS352, S05

Lecture 20 17

How do we implement “translate” bubble?

• List some possibilities…

CPU Cache DRAM
64MB

LW R1,0(R2)

Virtual Addr.

32 bits

21 bits

T
ra

ns
la

te
Physical Addr.

26 bits

UTCS
CS352, S05

Lecture 20 18

Virtual Address Translation

• Main Memory = 64MB
• Page Size = 4KB
• VPN = 20 bits
• PPN = 14 bits

Virtual Page Number (VPN) Page Offset

Physical Page Number (PPN) Page Offset

Translation
Table

0

11

1225

31 0

11

12

• Translation table
– aka “Page Table”

10

UTCS
CS352, S05

Lecture 20 19

Page Table Construction

• Page table size
– (14 + 1) * 220 = 4MB

• Where to put the page table?

valid Physical Page Number
Page Table Register

+

VPN offset

PPN offset

UTCS
CS352, S05

Lecture 20 20

Paging: Main Memory as a Cache for Disk

• 32 bit addresses = 4GB, Main Memory = 64MB
• Dynamically adjust what data stays in main memory

– Page similar to cache block
• Note: file system >> 4GB, managed by O/S

data page
(4-256KB)

Demand Paging

11

UTCS
CS352, S05

Lecture 20 21

Virtual Addresses Span Memory+Disk

• Mappings changed dynamically by O/S
– In response to users data accesses
– OS triggered by hardware

Virtual Addresses
Physical Addresses

Disk

UTCS
CS352, S05

Lecture 20 22

What if Data is Not in DRAM?

1) Examine page table

2) Discover that no mapping exists

3) Select page to evict, store back to disk

4) Bring in new page from disk

5) Update page table

12

UTCS
CS352, S05

Lecture 20 23

Page Fault

User Program Runs
Page fault

OS requests page

Disk read

2nd User Program Runs
Disk interrupt

OS Installs page

User program
resumes

UTCS
CS352, S05

Lecture 20 24

VM Requires

• Restartable (or resumable) instructions
– must be able to resume program after recovering from a

page fault
• Ability to mark a page not present

– and raise a page fault when referencing such a page
• (Optional) Maintain status bits per page

– R - referenced - for use by replacement algorithm
– M - modified - to determine when page is dirty

13

UTCS
CS352, S05

Lecture 20 25

Page Frame Management

• OS maintains
– page table for each user

process
– page frame table
– free page list

• pages evicted when
number of free pages falls
below a low water mark.

– pages evicted using a
replacement policy
• random, FIFO, LRU, clock

– if M-bit is clear, need not
copy the page back to disk

Page Frame Table

Link R M State

Free

Proc 1

UTCS
CS352, S05

Lecture 20 26

How much memory does each process need?

• Need to keep a process’
working set in memory or
thrashing will occur

• Find working set size by
increasing page frame
allocation until PF/s falls
below limit

• Swap out whole process if
insufficient page frames
for working set

W

X

Y

Z

X

Y

Z

W

Y

Z

W

X

Reference four pages in
sequence, mapped to three page
frames

14

UTCS
CS352, S05

Lecture 20 27

Page Table Organization

• Flat page table has size
proportional to size of
virtual address space
– can be very large for a

machine with 64-bit
addresses and several
processes

• Three solutions
– page the page table (fixed

mapping)
• what really needs to

be locked down?
– multi-level page table

(lower levels paged - Tree)
– inverted page table (hash

table)

PTP

2n-o

UTCS
CS352, S05

Lecture 20 28

Multi-Level Page Table

PTP

Dir1 Dir2 Page offset

Directory
Directory

Page
Directory

Page
Table

e.g., 42-bit VA with 12-bit offset
10-bits for each of three fields
1024 4-byte entries in each table (one page)

15

UTCS
CS352, S05

Lecture 20 29

Inverted Page Tables

• Store only PTEs for pages
in physical memory

• Miss in page table implies
page is on disk

• Need KP entries for P page
frames (usually K > 2)

Virtual Address
Page Offset

Hash Page Frame S

=

Frame Offset

OK

UTCS
CS352, S05

Lecture 20 30

Summary

• Virtual memory provides
– Illusion of private memory system for each process
– Protection
– Relocation in memory system
– Demand paging

• But – page tables can be large
– Motivates: paging page tables, multi-level tables, inverted

page tables

• Next time
– Integration of virtual memory into cache hierarchy
– DRAM memory organization

