Lecture 16: Improving Cache Performance

* Last Time:
- Cache introduction
* Average Memory Access Time (AMAT)
- Set associativity

+ Today
- Replacement and write policies
- Cache performance optimizations
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Cache Organization
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«Where does a block get placed?

» How do we find it?

» Which one do we replace when a new one is brought in?
* What happens on a write?
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How Do We Find a Block in The Cache?

+ Our Example:
- Main memory address space = 32 bits (= 4GBytes)
- Block size = 4 words = 16 bytes
- Cache capacity = 8 blocks = 128 bytes

block address
32 bit Address

tag index block offset

28 bits 4 bits
Valid bit = is cache block good?
index = which set
tag = which data/instruction in block
block offset = which word in block
# tag/index bits determine the associativity

tag/index bits can come from anywhere in block address
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Finding a Block: Direct-Mapped
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With cache capacity = 8 blocks
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Finding A Block: 2-Way Set-Associative

2 elements per set
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Set Associative Cache
S - sets Low address bits select set

A - elements in each set
- A-way associative
In the example, S=4, A=2
- 4-way associative 8-entry
cache
All of main memory is
divided into S sets
- All addresses in set N map
to same set of the cache
+ Addr =N mod S
* A locations available
Shares costly comparators
across sefts
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- 2 in example
High address bits are fag,
used fo associatively
search the selected set
Extreme cases
- A=1: Direct mapped cache
- S=1: Fully associative
A need not be a power of 2




Finding A Block: Fully Associative
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Which Block Should Be Replaced on Miss?

+ Direct Mapped

- Choice is easy - only one option

* Associative
- Randomly select block in set to replace
- Least-Recently used (LRU)

+ Implementing LRU
- 2-way set-associative
- >2 way set-associative
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What Happens on a Store?

+ Need to keep cache consistent with main memory
- Reads are easy - no modifications
- Werites are harder - when do we update main memory?

* Write-Through
- On cache write - always update main memory as well

- Use a write buffer to stockpile writes to main memory for
speed

* Write-Back
- On cache write - remember that block is modified (dirty
bit)
- Update main memory when dirty block is replaced
- Sometimes need to flush cache (I/0, multiprocessing)
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BUT: What if Store Causes Missl!

+ Write-Allocate
- Bring written block into cache
- Update word in block
- Anticipate further use of block

* No-write Allocate
- Main memory is updated
- Cache contents unmodified
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