Lecture 16: Improving Cache Performance

* Last Time:
- Cache introduction
* Average Memory Access Time (AMAT)
- Set associativity

+ Today
- Replacement and write policies
- Cache performance optimizations

UTCcS Lecture 16
CS352, S05

Cache Organization

Address
27 95 90 99 96
15 11 12 13 14
42 75 74 73 72
86 33 35 31 37
V_alld . W
bits ~N"

Data

«Where does a block get placed?

» How do we find it?

» Which one do we replace when a new one is brought in?
* What happens on a write?

uTCS Lecture 16
CS352, S05

How Do We Find a Block in The Cache?

+ Our Example:
- Main memory address space = 32 bits (= 4GBytes)
- Block size = 4 words = 16 bytes
- Cache capacity = 8 blocks = 128 bytes

block address
32 bit Address

tag index block offset

28 bits 4 bits
Valid bit = is cache block good?
index = which set
tag = which data/instruction in block
block offset = which word in block
tag/index bits determine the associativity

tag/index bits can come from anywhere in block address
UTCcS Lecture 16
CS352, S05

Finding a Block: Direct-Mapped

S
Entries
25 N\ /

|_|_|Tag Index Hit Data

Address

With cache capacity = 8 blocks

uTCS Lecture 16
CS352, S05

Finding A Block: 2-Way Set-Associative

2 elements per set
A

4
Sets
26
Tag | |
Address Hit l
Data
uUTCS Lecture 16 5
CS352, S05
Set Associative Cache
S - sets Low address bits select set

A - elements in each set
- A-way associative
In the example, S=4, A=2
- 4-way associative 8-entry
cache
All of main memory is
divided into S sets
- All addresses in set N map
to same set of the cache
+ Addr =N mod S
* A locations available
Shares costly comparators
across sefts

uTCS Lecture 16

CS352, S05

- 2 in example
High address bits are fag,
used fo associatively
search the selected set
Extreme cases
- A=1: Direct mapped cache
- S=1: Fully associative
A need not be a power of 2

Finding A Block: Fully Associative

T e T T
N N |

i

L L R
N |

~_7
L Y Y

Data

uUTCcS Lecture 16
Cs352, S05

ﬂi@é

Which Block Should Be Replaced on Miss?

+ Direct Mapped

- Choice is easy - only one option

* Associative
- Randomly select block in set to replace
- Least-Recently used (LRU)

+ Implementing LRU
- 2-way set-associative
- >2 way set-associative

uTCS Lecture 16 8
CS352, S05

What Happens on a Store?

+ Need to keep cache consistent with main memory
- Reads are easy - no modifications
- Werites are harder - when do we update main memory?

* Write-Through
- On cache write - always update main memory as well

- Use a write buffer to stockpile writes to main memory for
speed

* Write-Back
- On cache write - remember that block is modified (dirty
bit)
- Update main memory when dirty block is replaced
- Sometimes need to flush cache (I/0, multiprocessing)

UTCcS Lecture 16 9
CS352, S05

BUT: What if Store Causes Missl!

+ Write-Allocate
- Bring written block into cache
- Update word in block
- Anticipate further use of block

* No-write Allocate
- Main memory is updated
- Cache contents unmodified

uTCS Lecture 16 10
CS352, S05

