
1

UTCS
CS352, S05

Lecture 13 1

Lecture 13: Branch Prediction & Instruction 
Level Parallelism

• Administrative:
– Partial solutions to HW #4 out…

Including bug-fix to HW #4
– Return written portion of HW #2

• Last Time:
– Pipeline hazards: Data, Control, Structural
– Fixes: Bypassing/forwarding

• Today
– Branch prediction (on blackboard)
– Static multiple-issue (slides)
– Dynamic, out-of-order multiple issue (on blackboard)

UTCS
CS352, S05

Lecture 13 2

Where Are We?

• Pipelined in-order processor
• Simple branch prediction
• Instruction/data caches (on –chip)

DEC Alpha 21064

• Out-of-order instruction execution
• “Superscalar”
• Sophisticated branch prediction

DEC Alpha 21264



2

UTCS
CS352, S05

Lecture 13 3

Branch prediction blackboard notes
(see separate text file)

UTCS
CS352, S05

Lecture 13 4

How Do We Speed up the Pipeline?

• Instruction Level Parallelism (ILP)
– Multi-issue (in-order execution to multiple pipes)
– Dynamic scheduling (“Superscalar”)
– Compiler schedules ILP (VLIW/EPIC)

• Undetermined dependencies at compile time ⇒ dynamic 
scheduling
– Object code compatibility
– Simplify compiler

• WAR/WAW hazards ⇒ register renaming

• Too many branches ⇒ better branch prediction
– Or use predication to eliminate branches

• Unknown dependencies (control/data) ⇒ speculate

ADD R1,R2,R3
SUB R1,R4,R5

ADD R1,R2,R3
SUB R1’,R4,R5⇒



3

UTCS
CS352, S05

Lecture 13 5

Multiple Issue – No instruction reordering

Register File

Instruction Memory

Instruction Buffer Hazard
Detect

UTCS
CS352, S05

Lecture 13 6

Multiple Issue (Details)

• Dependencies and structural hazards 
checked at run-time

• Can run existing binaries
– Recompiler for performance, not correctness
– Example - Pentium

• More complex issue logic
– Swizzle next N instructions into position
– Check dependencies and resource needs
– Issue M <= N instructions that can execute in 

parallel



4

UTCS
CS352, S05

Lecture 13 7

Example Multiple Issue

LOOP: LD F0, 0(R1) // a[i] 1
LD F2, 0(R2) // b[i] 2
MULTD F8, F0, F2 // a[i] * b[i] 4 (stall)
ADDD F12, F8, F16 // + c 5
SD F12, 0(R3) // d[i] 6
ADDI R1, R1, 4 
ADDI R2, R2, 4                            7
ADDI R3, R3, 4
ADDI R4, R4, 1 // increment I 8
SLT R5, R4, R6 // i<n-1 9
BNEQ R5, R0, LOOP 10

Issue rules: at most 1 load/store, at most 1 floating op

Latency:  load=1, int=1, float-mult = 1, float-add = 1

cycle

Old CPI = 12/11 = 1.09
New CPI = 10/11 = 0.91

UTCS
CS352, S05

Lecture 13 8

Rescheduled for Multiple Issue

LOOP: LD F0, 0(R1) // a[i] 1
ADDI R1, R1, 4 
LD F2, 0(R2) // b[i] 2
ADDI R2, R2, 4 
MULTD F8, F0, F2 // a[i] * b[i] 4
ADDI R4, R4, 1 // increment I
ADDD F12, F8, F16 // + c 5
SLT R5, R4, R6 // i<n-1
SD F12, 0(R3) // d[i] 6
ADDI R3, R3, 4
BNEQ R5, R0, LOOP 7

Issue rules: at most 1 LD/ST, at most 1 floating op

Latency:  LD - 1, int-1, F*-1, F+-1

cycle

Old CPI = 0.91
New CPI = 7/11 = 0.64



5

UTCS
CS352, S05

Lecture 13 9

The Problem with Static Scheduling

• In-order execution
– an unexpected long latency 

blocks ready instructions 
from executing

– binaries need to be 
rescheduled for each new 
implementation

– small number of named
registers becomes a 
bottleneck

LW R1, C    //miss 50 cycles
LW R2, D
MUL R3, R1, R2
SW R3, C
LW R4, B    //ready
ADD R5, R4, R9
SW R5, A
LW R6, F
LW R7, G
ADD R8, R6, R7
SW R8, E

UTCS
CS352, S05

Lecture 13 10

Dynamic Scheduling

• Determine execution order of instructions at run 
time

• Schedule with knowledge of run-time variable 
latency
– cache misses

• Compatibility advantages
– avoid need to recompile old binaries
– avoid bottleneck of small named register sets

• but still need to deal with spills
• Significant hardware complexity



6

UTCS
CS352, S05

Lecture 13 11

Summary

• Today:
– Branch prediction – static and dynamic
– Static multiple issue – VLIW and Superscalar
– Dynamic multiple issue – basic idea only.

• Next Time
– Caches  (new topic!)
– Read: P&H 7.1 – 7.3


