
1

UTCS
CS352, S05

Lecture 12 1

Lecture 12: Pipelining Hazards

• Administrative
– HW #3 due
– HW #4 handed out

• Today
– Review pipeline hazards
– Data hazards

• Eliminating them with forwarding
– Memory hazards

• Load delay slot, stalling
– Control hazards

• Branch delay slot, branch prediction

– Branch prediction

UTCS
CS352, S05

Lecture 12 2

Pipeline Hazards

• Data hazards
– an instruction uses the result of a previous instruction (RAW)

ADD R1, R2, R3 or SW R1, 3(R2)
ADD R4, R1, R5 LW R3, 3(R2)

• Control hazards
– the location of an instruction depends on a previous instruction

JMP LOOP
…

LOOP: ADD R1, R2, R3
• Structural hazards

– two instructions need access to the same resource
• e.g., single memory shared for instruction fetch and 

load/store



2

UTCS
CS352, S05

Lecture 12 3

Data Hazards (RAW)

Cycle

F

In
st

ru
ct

io
n

R X M W

F R X M W

Write Data to R1 Here

Read from R1 Here
ADD R1, R2, R3
ADD R4, R1, R5

UTCS
CS352, S05

Lecture 12 4

Resolving Hazards: Pipeline Stalls

• Can resolve any type of hazard
– data, control, or structural

• Detect the hazard
• Freeze the pipeline up to the dependent stage 

until the hazard is resolved



3

UTCS
CS352, S05

Lecture 12 5

Example Pipeline Stall (Diagram)

Cycle

F

In
st

ru
ct

io
n

R X M W

F R X M W

Write Data to R1 Here

Read from R1 Here

ADD R1, R2, R3
ADD R4, R1, R5

Bubble

UTCS
CS352, S05

Lecture 12 6

Resolving Hazards: Bypass (Forwarding)

• If data is available elsewhere in the pipeline, 
there is no need to stall

• Detect condition
• Bypass (or forward) data directly to the 

consuming pipeline stage
• Bypass eliminates stalls for single-cycle operations

– reduces longest stall to N-1 cycles for N-cycle 
operations



4

UTCS
CS352, S05

Lecture 12 7

Simple Pipeline with Bypass Multiplexers

I-Mem

A DO

Reg
File

RW

D-Mem

A DO

DI

IR

IR

B

A
C

D

IR IR

E

+4 IP IP

UTCS
CS352, S05

Lecture 12 8

Data Hazards With Bypassing

Cycle

F

In
st

ru
ct

io
n

R X M W

F R X M W

R1 computed

R1 used

ADD R1, R2, R3
ADD R4, R1, R5
SUB R5, R1, R6
XOR R7, R8, R1

F R X M W

F R X M W

ADD

SUB

XOR



5

UTCS
CS352, S05

Lecture 12 9

Control of Bypass (show with next figure)

• Compare source register 
fields of IRX to destination 
register fields of IRM and 
IRW.

• If match and fields active,
enable appropriate bypass 
path

=
IRX.RS1

IRM.RD

BMX1

=
IRX.RS2

IRM.RD

BMX2

=
IR X.RS1

IRW.RD

BWX1

=
IRX.RS2

IRW.RD

BWX2

UTCS
CS352, S05

Lecture 12 10

Figures 6.30 and 6.32 from text

(pp. 409 & 411) 
(work example on copy of 6.32)



6

UTCS
CS352, S05

Lecture 12 11

Memory Data Hazards

Cycle

F

In
st

ru
ct

io
n

R X M W

F R X M W

R1 loaded

R1 used

LW R1, 0(R2)
ADD R4, R1, R5
SUB R7, R8, R9

ADD

F R X M WSUB

UTCS
CS352, S05

Lecture 12 12

Instruction Scheduling (Load Delay Slots)

Cycle

F

In
st

ru
ct

io
n

R X M W

F R X M W

R1 loaded

R1 used

LW R1, 0(R2)
SUB R7, R8, R9
ADD R4, R1, R5

ADD

SUB

F R X M W



7

UTCS
CS352, S05

Lecture 12 13

Figures 6.32 (again) from text, pp. 409

(Forwarding; work example)

UTCS
CS352, S05

Lecture 12 14

Control Hazards (Branch on condition)

Cycle

F

In
st

ru
ct

io
n

R X M W

F R X M W

Need Destination Here

BGE #12
...

XX: ADD ...

Branch Test and Destination

F
Result: 2 cycle stall



8

UTCS
CS352, S05

Lecture 12 15

Reducing Control Hazards

Cycle

F

In
st

ru
ct

io
n

R X M W

F R X M W

Need Destination Here
BGE #12
...

XX: ADD ...

Branch Test and Destination

Move test logic into R stage
- BUT still have one cycle stall

UTCS
CS352, S05

Lecture 12 16

Figure 6.38 (pg. 420)



9

UTCS
CS352, S05

Lecture 12 17

Branch Delay Slots

• Since we need to have a dead 
cycle anyway, let’s put a 
useful instruction there

• Advantage:
– Do more useful work
– Potentially get rid of all stalls

• Disadvantage:
– Exposes microarchitecture to 

ISA
– Deeper pipelines require more 

delay slots

ADD R2,R3,R4
BNEZ R5,_loop
NOP

BNEZ R5,_loop
ADD R2,R3,R4

UTCS
CS352, S05

Lecture 12 18

Speculating for control hazards

• Conservatively, the pipeline 
waits until the branch 
target is computed before 
fetching the next 
instruction. 

• Alternatively, we can 
speculate which direction 
and to what address the 
branch will go.

• Need to confirm 
speculation and back up 
later.

F R X M W

F R X M W

F R X M W

F R X M W

F R X M W

F R X M WF



10

UTCS
CS352, S05

Lecture 12 19

Predict Not Taken

Untaken Branch F R X M W
i+1 F R X M W
i+2 F R X M W
i+3 F R X M W
i+4 F R X M W

Taken Branch F R X M W
i+1 F ? ? ? ?
Branch target F R X M W
b+1 F R X M W
b+2 F R X M W

UTCS
CS352, S05

Lecture 12 20

Example Speculative Conditional Branch

I-Mem

A DO

Reg
File

RW

D-Mem

A DO

DI

IR

IR

B

A
C

D

IR IR

E

+4 PC PC

BNEZ R1, LOOP
ADD R2, R3, R4
SUB R5, R6, R7



11

UTCS
CS352, S05

Lecture 12 21

Speculative Conditional Branch (Diagram)

Cycle

F

In
st

ru
ct

io
n

R X M W

F X M W

Condition and Dest Available Here

Speculate
Not Taken

BNEZ R1, LOOP
ADD R2, R3, R4
SUB R5, R6, R7

F R X M W

Confirm or Branch

R

UTCS
CS352, S05

Lecture 12 22

Control Hazards Summary

• Three approaches
– Stall until new PC is known
– Speculate that branch goes a particular way

• If guess is right, great!
• If guess is wrong, kill off speculated work

– Delay slot

• Delay slot is only approach visible to programmer!
– Unfortunately, MIPS picked this approach!



12

UTCS
CS352, S05

Lecture 12 23

Exceptions – implicit conditional branches

• Examples of exceptions
– Overflow of result
– Page fault on load

• On an exception, branch to some address
• But – no explicit branch instruction!
• Architectural issues:

– What exceptions are supported?
– Are they “precise”?

• i.e. behavior is as-if there was no pipelining
– Adds significant complexity to implementation!

UTCS
CS352, S05

Lecture 12 24

R4000 Pipeline

Instruction Memory Reg RegData Memory

IF IS RF EX DFDS TC WB

(I$ start) (ALU) (D$ start) (D$ finish)(decode/opfetch)(I$ finish) (tag check) (write back)

• How long is load delay?
• How long is branch delay?
• How many comparators are needed to implement the  

forwarding decisions?
• What instruction sequences will still cause stalls?



13

UTCS
CS352, S05

Lecture 12 25

How Do We Speed up the Pipeline?

• Pipeline too long ⇒ more ALUs (exploit ILP)
• WAR/WAW hazards ⇒ register renaming

• Undetermined dependencies at compile time ⇒
dynamic scheduling
– Object code compatibility
– Simplify compiler

• Too many branches ⇒ better branch prediction
– Or use predication to eliminate branches

• Unknown dependencies (control/data) ⇒ speculate
• Explicitly parallel architectures (EPIC)

ADD R1,R2,R3
SUB R1,R4,R5

ADD R1,R2,R3
SUB R1’,R4,R5

⇒

UTCS
CS352, S05

Lecture 12 26

Summary

• Hazard detection and avoidance
• Improving Pipeline performance

• Next Time
– Reading assignment: P&H 6.9 – 6.12


