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Lecture 8: Datapaths and Pipelining

• Last Time
– Last of the ISA lectures

• Today
– Role of compiler
– Datapath organization
– Datapath control
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Instruction Execution

• 5 basic steps
– fetch instruction (F)
– decode instruction

and read registers (R)
– execute (X)
– access memory (M)
– store result (W)
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Execute

Memory

Write
Result
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• We're ready to look at an implementation of the MIPS
• Simplified to contain only:

– memory-reference instructions:  lw, sw 
– arithmetic-logical instructions:  add, sub, and, or, slt
– control flow instructions:  beq, j

• Generic Implementation:

– use the program counter (PC) to supply instruction address
– get the instruction from memory
– read registers
– use the instruction to decide exactly what to do

• All instructions use the ALU after reading the registers
Why?  memory-reference?  arithmetic? control flow?

The Processor:  Datapath & Control
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Pieces we’ll need
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• Abstract / Simplified View:

Two types of functional units:
– elements that operate on data values (combinational)
– elements that contain state (sequential)

More Implementation Details
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• Built using D flip-flops
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Abstraction

• Make sure you understand the abstractions!
• Sometimes it is easy to think you do, when you don’t
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Register File

• Note:  we still use the real clock to determine when to write
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Simple Implementation

• Include the functional units we need for each instruction

Why do we need this stuff?
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ADD Instruction
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LW/SW Instruction
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BEQ Instruction
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Building the Datapath

• Use multiplexors to stitch them together
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Control

• Selecting the operations to perform (ALU, read/write, etc.)
• Controlling the flow of data (multiplexor inputs)
• Information comes from the 32 bits of the instruction
• Example:

add $8, $17, $18 Instruction Format:

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

• ALU's operation based on instruction type and function code
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• e.g., what should the ALU do with this instruction
• Example:  lw $1, 100($2)

35 2 1 100

op rs rt 16 bit offset

• ALU control input

0000 AND
0001 OR
0010 add
0110 subtract
0111 set-on-less-than
1100 NOR

• Why is the code for subtract 0110 and not 0011?

Control
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• Must describe hardware to compute 4-bit ALU control input
– given instruction type 

00 = lw, sw
01 = beq, 
10 = arithmetic

– function code for arithmetic

• Describe it using a truth table (can turn into gates):

ALUOp 
computed from instruction type

Control
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Control

• Simple combinational logic (truth tables)
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• All of the logic is combinational
• We wait for everything to settle down, and the right thing to be done

– ALU might not produce “right answer” right away
– we use write signals along with clock to determine when to write

• Cycle time determined by length of the longest path

Our Simple Control Structure

We are ignoring some details like setup and hold times
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Single Cycle Implementation

• Calculate cycle time assuming negligible delays except:
– memory (200ps), 

ALU and adders (100ps), 
register file access (50ps)
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Where we are headed

• Single Cycle Problems:
– what if we had a more complicated instruction like floating 

point?
– wasteful of area

• One Solution:
– use a “smaller” cycle time
– have different instructions take different numbers of cycles
– a “multicycle” datapath:
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Summary

• Datapath organization
• Datapath control

• Next Time
– Pipelining

• Reading assignment – P&H 5.5, 5.6, 5.9-5.11


