
1©2004 Morgan Kaufmann Publishers

Lecture 8: Datapaths and Pipelining

• Last Time
– Last of the ISA lectures

• Today
– Role of compiler
– Datapath organization
– Datapath control

2©2004 Morgan Kaufmann Publishers

Instruction Execution

• 5 basic steps
– fetch instruction (F)
– decode instruction

and read registers (R)
– execute (X)
– access memory (M)
– store result (W)

I-Fetch

Decode

Execute

Memory

Write
Result

3©2004 Morgan Kaufmann Publishers

• We're ready to look at an implementation of the MIPS
• Simplified to contain only:

– memory-reference instructions: lw, sw
– arithmetic-logical instructions: add, sub, and, or, slt
– control flow instructions: beq, j

• Generic Implementation:

– use the program counter (PC) to supply instruction address
– get the instruction from memory
– read registers
– use the instruction to decide exactly what to do

• All instructions use the ALU after reading the registers
Why? memory-reference? arithmetic? control flow?

The Processor: Datapath & Control

4©2004 Morgan Kaufmann Publishers

Pieces we’ll need

PC ALU

Data

Register #

Register #

Register #

Registers

Address

Data

Data
memoryAddress Instruction

Instruction
memory

5©2004 Morgan Kaufmann Publishers

• Abstract / Simplified View:

Two types of functional units:
– elements that operate on data values (combinational)
– elements that contain state (sequential)

More Implementation Details

Data

Register #

Register #

Register #

PC Address Instruction

Instruction
memory

Registers ALU Address

Data

Data
memory

AddAdd

4

6©2004 Morgan Kaufmann Publishers

• Built using D flip-flops

Register File

Read register
number 1 Read

data 1Read register
number 2

Read
data 2

Write
register

Write
Write
data

Register file

Read register
number 1

Register 0

Register 1

. . .

Register n – 2

Register n – 1

M
u
x

Read register
number 2

M
u
x

Read data 1

Read data 2

Do you understand? What is the “Mux” above?

7©2004 Morgan Kaufmann Publishers

Abstraction

• Make sure you understand the abstractions!
• Sometimes it is easy to think you do, when you don’t

M
u
x

C

Select

32

32

32

B

A

M
u
x

Select

B31

A31

C31

M
u
x

B30

A30

C30

M
u
x

B0

A0

C0

...
...

8©2004 Morgan Kaufmann Publishers

Register File

• Note: we still use the real clock to determine when to write

Write

0
1

n-to-2n
decoder

n – 1

n

Register 0

C

D

Register 1
C

D

Register n – 2
C

D

Register n – 1
C

D

...

Register number
...

Register data

9©2004 Morgan Kaufmann Publishers

Simple Implementation

• Include the functional units we need for each instruction

Why do we need this stuff?

PC

Instruction
address

Instruction

Instruction
memory

Add Sum

a. Instruction memory b. Program counter c. Adder

Read
register 1

Read
register 2

Write
register

Write
Data

Registers ALUData

Data

Zero
ALU

result

RegWrite

a. Registers b. ALU

5

5

5

Register
numbers

Read
data 1

Read
data 2

ALU operation4

Address Read
data

Data
memory

a. Data memory unit

Write
data

MemRead

MemWrite

b. Sign-extension unit

Sign
extend

16 32

10©2004 Morgan Kaufmann Publishers

ADD Instruction

Data

Register #

Register #

Register #

PC Address Instruction

Instruction
memory

Registers ALU Address

Data

Data
memory

AddAdd

4

11©2004 Morgan Kaufmann Publishers

LW/SW Instruction

Data

Register #

Register #

Register #

PC Address Instruction

Instruction
memory

Registers ALU Address

Data

Data
memory

AddAdd

4

12©2004 Morgan Kaufmann Publishers

BEQ Instruction

Data

Register #

Register #

Register #

PC Address Instruction

Instruction
memory

Registers ALU Address

Data

Data
memory

AddAdd

4

13©2004 Morgan Kaufmann Publishers

Building the Datapath

• Use multiplexors to stitch them together

Read
register 1

Read
register 2

Write
register

Write
data

Write
data

Registers ALU

Add

Zero

RegWrite

MemRead

MemWrite

PCSrc

MemtoReg

Read
data 1

Read
data 2

ALU operation4

Sign
extend

16 32

Instruction ALU
result

Add

ALU
result

M
u
x

M
u
x

M
u
x

ALUSrc

Address

Data
memory

Read
data

Shift
left 2

4

Read
address

Instruction
memory

PC

14©2004 Morgan Kaufmann Publishers

Control

• Selecting the operations to perform (ALU, read/write, etc.)
• Controlling the flow of data (multiplexor inputs)
• Information comes from the 32 bits of the instruction
• Example:

add $8, $17, $18 Instruction Format:

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

• ALU's operation based on instruction type and function code

15©2004 Morgan Kaufmann Publishers

• e.g., what should the ALU do with this instruction
• Example: lw $1, 100($2)

35 2 1 100

op rs rt 16 bit offset

• ALU control input

0000 AND
0001 OR
0010 add
0110 subtract
0111 set-on-less-than
1100 NOR

• Why is the code for subtract 0110 and not 0011?

Control

16©2004 Morgan Kaufmann Publishers

• Must describe hardware to compute 4-bit ALU control input
– given instruction type

00 = lw, sw
01 = beq,
10 = arithmetic

– function code for arithmetic

• Describe it using a truth table (can turn into gates):

ALUOp
computed from instruction type

Control

Instruction RegDst ALUSrc
Memto-

Reg
Reg

Write
Mem
Read

Mem
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

Read
register 1

Read
register 2

Write
register

Write
data

Write
data

Registers

ALU

Add

Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[31–0] ALU

result

Add

ALU
result

M
u
x

M
u
x

M
u
x

Address

Data
memory

Read
data

Shift
left 2

4

Read
address

Instruction
memory

PC

1

0

0

1

0

1

M
u
x

0

1

ALU
control

Instruction [5–0]

Instruction [25–21]

Instruction [31–26]

Instruction [15–11]

Instruction [20–16]

Instruction [15–0]

RegDst
Branch
MemRead
MemtoReg
ALUOp
MemWrite
ALUSrc
RegWrite

Control

18©2004 Morgan Kaufmann Publishers

Control

• Simple combinational logic (truth tables)

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5– 0)

ALUOp0

ALUOp

ALU control block

R-format Iw sw beq

Op0
Op1
Op2
Op3
Op4
Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO

19©2004 Morgan Kaufmann Publishers

• All of the logic is combinational
• We wait for everything to settle down, and the right thing to be done

– ALU might not produce “right answer” right away
– we use write signals along with clock to determine when to write

• Cycle time determined by length of the longest path

Our Simple Control Structure

We are ignoring some details like setup and hold times

State
element

1

State
element

2
Combinational logic

Clock cycle

20©2004 Morgan Kaufmann Publishers

Single Cycle Implementation

• Calculate cycle time assuming negligible delays except:
– memory (200ps),

ALU and adders (100ps),
register file access (50ps)

Read
register 1

Read
register 2

Write
register

Write
data

Write
data

Registers ALU

Add

Zero

RegWrite

MemRead

MemWrite

PCSrc

MemtoReg

Read
data 1

Read
data 2

ALU operation4

Sign
extend

16 32

Instruction ALU
result

Add

ALU
result

M
u
x

M
u
x

M
u
x

ALUSrc

Address

Data
memory

Read
data

Shift
left 2

4

Read
address

Instruction
memory

PC

21©2004 Morgan Kaufmann Publishers

Where we are headed

• Single Cycle Problems:
– what if we had a more complicated instruction like floating

point?
– wasteful of area

• One Solution:
– use a “smaller” cycle time
– have different instructions take different numbers of cycles
– a “multicycle” datapath:

Data

Register #

Register #

Register #

PC Address

Instruction
or dataMemory Registers ALU

Instruction
register

Memory
data

register

ALUOut

A

B
Data

22©2004 Morgan Kaufmann Publishers

Summary

• Datapath organization
• Datapath control

• Next Time
– Pipelining

• Reading assignment – P&H 5.5, 5.6, 5.9-5.11

