
1

UTCS
CS352, S05

Lecture 6 1

Lecture 7: Instruction Set Architectures - IV

• Announcements:
– Readings for today: 3.2 (int), 3.6 (float), B.9 (memory)

• Last Time
– MIPS ISA and discussion

• Today
– Case study #2: graphics processor ISA
– Register organization
– Memory addressing

UTCS
CS352, S05

Lecture 6 2

Last time - MIPS ISA (a visual)

R0

R31

PC

R1

F0 F1
F2 F3

F30 F31

Op RS1 RS2 RD func
6 5 55 11

Op RS1 RD Const
6 5 5 16

Op Const
6 26

Fixed-Format

I: ld/st, rd ← rs1 op imm, branch

R: rd ← rs1 op rs2

J: j, jal



2

UTCS
CS352, S05

Lecture 6 3

MIPS Instruction Types

• ALU Operations
– arithmetic – int and float (add, sub, mult)
– logical (and, or, xor, srl, sra)
– data type conversions (cvt.w.d, cvt.s.d)

• Data Movement
– memory reference (lb, lw, sb, sw) 
– register to register (move, mfhi)

• Control - what instruction to do next
– tests/compare (slt, seq)
– branches and jumps (beq, bne, j, jr) 
– support for procedure call (jal, jalr) 
– operating system entry (syscall)

UTCS
CS352, S05

Lecture 6 4

ISA for a  modern graphics processor



3

UTCS
CS352, S05

Lecture 6 5

A modern graphics processor

Vertex
Processor

Fragment
Processor

Triangle
Assembly &
Rasterization

Framebuffer
Operations

Fram
ebuffer

Textures

Texture
Filtering &

Decompression

= Programmable

= Not programmable – hardwired algorithms

UTCS
CS352, S05

Lecture 6 6

A GPU Register

• Instructions can access and rearrange individual 
components:

• Lots of 4-vector computations in 3D graphics

128 bits wide

32 bit float 32 bit float 32 bit float 32 bit float

X Y Z W

ADD R0, R1.wzxy, R2.xxww

R0.x = R1.w + R2.x
R0.y = R1.z  + R2.x
R0.z = R1.x  + R2.w
R0.w = R1.y + R2.w



4

UTCS
CS352, S05

Lecture 6 7

Vertex Processor Instructions

• 4-vector arithmetic – add, multiply, and combinations
ADD R0, R1.wzxy, R2.xyzw

• Scalar arithmetic – reciprocal, square root, etc..
RSQ R3.x, R4.x

• Specialized arithmetic
LIT R0, R1

• Control flow
BRA target, (EQ.x)

• Move
• Misc – including pack/unpack, and data conversion

UTCS
CS352, S05

Lecture 6 8

Condition codes and predication

• Condition codes may be set on any operation
– By appending “C” to opcode:  e.g. ADDC instead of ADD

• There are four sets of condition codes (for x,y,z,w)

• Set to indicate:
– Less than zero
– Equal to zero
– Greater than zero
– Unordered (e.g. NaN)

• Branches can use one condition code
• Other instructions can be predicated

Example: MOV R1.xy (NE.z), R0;
• Copy R0 components to R1’s X & Y components
• except when condition code’s Z component is EQ



5

UTCS
CS352, S05

Lecture 6 9

Naming storage locations

UTCS
CS352, S05

Lecture 6 10

Naming Storage in ISAs

• Memory
– Addresses in instruction
– Addresses computed by instructions

• General Registers
– Operands to instructions

• Special registers
– Status, condition codes, floating-point codes
– Operands to special instructions



6

UTCS
CS352, S05

Lecture 6 11

How many names (operands) per instruction?

• No Operands HALT
NOP

• 1 operand NOT R4 R4 ⇐ R4
JMP _L1

• 2 operands ADD R1, R2 R1 ⇐ R1 + R2
LDI R3, #1234

• 3 operands ADD R1, R2, R3 R1 ⇐ R2 + R3

• > 3 operands MADD R4,R1,R2,R3 R4 ⇐R1+(R2*R3)

UTCS
CS352, S05

Lecture 6 12

Two ways to specify an operand

1) We don’t - operands can be implicit
Example: ‘RET’ on x86 architecture

(return address implicitly at top of stack)

2) Actual value – e.g. 0x3f as an immediate value in instruction

3) Indirectly, using an operand specifier.
Two parts to an operand specifier:

b) Namespace (usually implicit) – e.g ‘registers’
a) Name (usually explicit) – e.g. ‘R13’



7

UTCS
CS352, S05

Lecture 6 13

Name Spaces

• Each name space ⇒
separately enumerable set of names

• For MIPS there are three namespaces:
– Integer register numbers
– Floating point register numbers
– Memory addresses

• Name space implied by opcode:
Examples:

NOT R4, R3

ADDM r1,r5,4000

Integer register name

Register
name

Memory
Address

UTCS
CS352, S05

Lecture 6 14

Evolution of Register Organization

• In the beginning…the 
accumulator
– 2 instruction types: op and 

store
A ← A op M
A ← A op *M
*M ← A

– a one address architecture
• each instruction 

encodes one memory 
address

– 2 addressing modes
• immediate: M
• indirect addressing: *M

– Early machines:
• EDVAC, EDSAC...

Memory

0

FFF

PC

Accumulator

Machine State

Op Address (M)

Instruction Format

(Op encodes addressing mode)



8

UTCS
CS352, S05

Lecture 6 15

Why Accumulator Architectures?

• Registers expensive in early technologies (vacuum 
tubes)

• Simple instruction decode
– Logic also expensive
– Critical programs were small (efficient encoding)

• Less logic ⇒ faster cycle time

• Model similar to earlier “tabulating” machines
– Think adding machine or calculator

UTCS
CS352, S05

Lecture 6 16

The Index Register

• Add an indexed addressing 
mode

A ← A op (M+I)
A ← A op *(M+I) 
*(M+I) ← A

– good for array access: x[j]
• address of x[0] in 

instruction
• j in index register

– one register for each key 
function

• IP → instructions
• I → data addresses
• A → data values

– new instructions to use I
• INC I, CMP I, etc.

Memory

0

FFF

PC

Accumulator

Machine State

Op Address (M)

Instruction Format

Index



9

UTCS
CS352, S05

Lecture 6 17

General Registers

• Merge accumulators (data) 
and index (address)

• Any register can hold 
variable or pointer
– simpler
– more orthogonal (opcode 

independent of register 
usage)

– More fast local storage
– but….addresses and data 

must be same size
• How many registers?

– More - fewer loads and 
stores

– But - more instruction bits

Memory

0

FFF
PC

Machine State

Op

3-address Instruction Format

R0
R1

Rn-1

i j k

UTCS
CS352, S05

Lecture 6 18

Stack Machines – like HP’s RPN calculators

• Register state is PC and SP
• All instructions performed 

on TOS (top of stack) and 
SOS (second on stack)
– pushes/pops of stack 

implied
op TOS SOS
op TOS M
op TOS *M
op TOS *(M+SP)

• Many instructions are zero
address

• Stack cache for 
performance
– similar to register file
– hardware managed

• Why do we care?         JVM

PC
Memory

Cur Inst

Code

TOS

Stack

TOS
SOS

Stack $

SP



10

UTCS
CS352, S05

Lecture 6 19

Examples of Stack Code

a = b + c * d;
e = a + f[j] + c;

PUSH d
MUL c
ADD b
PUSH j
PUSHX f
ADD c
ADD
POP e

PUSH d
PUSH c
MUL
PUSH b
ADD
PUSH j
PUSHX f
PUSH c
ADD
ADD
POP e

LOAD R1, d
LOAD R2, c
MUL R3, R1, R2
LOAD R4, b
ADD R5, R4, R3
LOAD R6, j
LOAD R7, f(R6)
ADD R8, R7, R2
ADD R9, R5, R8
STORE e, R9

Stack + One AddressPure Stack
(zero addresses)

Load/Store
(many GP registers)8 inst, 7addr

11 inst, 7 addr 10 inst, 6addr

UTCS
CS352, S05

Lecture 6 20

Memory Organization



11

UTCS
CS352, S05

Lecture 6 21

Memory Organization

• Four components specified by ISA:

– Smallest addressable unit of memory
(byte? halfword? word?)

– Maximum addressable units of memory (doubleword?)

– Alignment

– Endianness

• Already talked about addressing modes last time

UTCS
CS352, S05

Lecture 6 22

Alignment

• Some architectures restrict addresses that can 
be used for particular size data transfers!
– Bytes accessed at any address

– Halfwords only at even addresses

– Words accessed only at multiples of 4

0x10000x1004

unaligned word access



12

UTCS
CS352, S05

Lecture 6 23

Endianness

• How are bytes ordered within a word?
– Little Endian (Intel/DEC)

– Big Endian (IBM/Motorola)

– Today - most machines can do either (configuration 
register)

0x1000 0x1001 0x1002 0x1003

LSBMSB

0x10000x10010x10020x1003

MSB LSB

UTCS
CS352, S05

Lecture 6 24

Data Types



13

UTCS
CS352, S05

Lecture 6 25

Data Types

• How the contents of 
memory and registers are 
interpreted

• Can be identified by 
– Tag (data itself)
– Use (instructions)

• Driven by application
– Signal processing

• 16-bit fixed point 
(fraction)

– Text processing
• 8-bit characters

– Scientific computing
• 64-bit floating point

• Most general purpose
computers support several 
types
– 8, 16, 32, 64-bit 
– signed and unsigned
– fixed and floating

0x8a1cint

“abcd”str

Examples of tags (ie. Symbolics machine)

UTCS
CS352, S05

Lecture 6 26

Example: 32-bit Floating Point

• Type specifies mapping 
from bits to real numbers 
(plus symbols)
– format

• S, 8-bit exp, 23-bit 
mantissa

– interpretation
• mapping from bits to 

abstract set

– operations
• add, mult, sub, sqrt, div

mantissaexps
2381

v MS E= − × ×−( ) .( )1 2 1127



14

UTCS
CS352, S05

Lecture 6 27

Exceptions

UTCS
CS352, S05

Lecture 6 28

Control - Exceptions/Events

• Implied branch after every 
instruction
– Internal events

(called faults or exceptions)

• arithmetic overflow
• page fault

– External events
(called interrupts)

• completion of I/O operations

• What happens????
– Save PC (in special register)
– Jump to exception address

(taken from table)
– When done: Jump to original PC + 4

Inst 1

Inst 2

P
ag

e 
Fl

t

D
is

k 
I/O

R
TC

O
ve

rfl
ow



15

UTCS
CS352, S05

Lecture 6 29

General ISA design principles

UTCS
CS352, S05

Lecture 6 30

Principles of Instruction Set Design

• Keep it simple (KISS)
– complexity

• increases logic area
• increases pipe stages
• increases development time

– evolution tends to make 
kludges

• Orthogonality (modularity)
– simple rules, few exceptions
– all ops on all registers

Data Types

O
pe

ra
tio

ns

Add Modes

Form
ats

Regs

• Frequency
– make the common case 

fast
• some instructions 

(cases) are more 
important than others

0%

10%

20%

30%

40%

50%

60%

INT LOAD STORE JMP FLOAT



16

UTCS
CS352, S05

Lecture 6 31

Principles of Instruction Set Design (part 2)

• Generality
– not all problems need the 

same 
features/instructions

– principle of least surprise
– performance should be 

easy to predict

• Cost effectiveness
– design ISA to permit 

efficient implementation
• today
• 10 years from now

vs

F D R E W
F D R E W

F D R E W
F D R E W

UTCS
CS352, S05

Lecture 6 32

CISC vs RISC

• What is a RISC? 
(Reduced Instruction Set Computer)
– no firm definition
– generally includes

• general registers
• fixed 3-address instruction 

format
• strict load-store 

architecture
• simple addressing modes
• simple instructions

– Examples
• DEC Alpha
• MIPS

– Advantages
• good compiler target
• easy to implement/pipeline

• CISC (Complex Instruction-Set 
Computer)
– CISC ≡ ¬RISC
– may include

• variable length instructions
• memory-register 

instructions
• complex addressing modes
• complex instructions

– CALLP, EDIT, …
– Examples

• DEC VAX, IBM 370, x86
– Advantages

• better code density
• legacy software



17

UTCS
CS352, S05

Lecture 6 33

Compilers

Performance = application +
compiler +
hardware

UTCS
CS352, S05

Lecture 6 34

Role of the Optimizing Compiler

Front End 
(Language Specific)

Code Generator

High-Level Optimizations 

Global Optimizations

C source code

Machine binary code

IR

IR

Machine-IR

Procedure Inlining
Loop Transformations

Common SubExp Elim.
Code Motion

Instruction Scheduling
Register Allocation
Machine Dependent

HW/SW 
complexity 
tradeoffs



18

UTCS
CS352, S05

Lecture 6 35

Example: Loop Optimization

LW  R1, X
ADD R2,R0,R0
ADD R3,R0,R0

LOOP: LW  R4,R1
ADD R3,R3,R4
ADD R1,R1,#4
ADD R2,R2,#1
SLT R5,R2,#MAX
BNEZ R5,LOOP

CONT:

LW  R1, X
ADD R2,R0,#MAX
SLLI R2,R2,#2
ADD R2,R1,R2
ADD R3,R0,R0

LOOP: LW  R4,R1
ADD R3,R3,R4
ADD R1,R1,#4
SLT R5,R1,R2
BNEZ R5,LOOP

CONT:

LW  R1, X
ADD R2,R0,R0
ADD R3,R0,R0

LOOP: SLT R5,R2,#MAX
BEQZ R5,CONT 
LW  R4,R1
ADD R3,R3,R4
ADD R1,R1,#4
ADD R2,R2,#1
J LOOP

CONT:

sum=0;
for(i=0;i<max;i++)
sum+=x[i];

Loop Reordering Induction Variable
Analysis

7 5

6

UTCS
CS352, S05

Lecture 6 36

Architect can help Compiler Writer

• Simplify, Simplify, Simplify
– Feature difficult to use, it won’t be used….Less is More!

• Regularity
– Common set of formats, few special cases

• Primitive, not solutions
– CALLS   vs.  Fast register moves

• Make performance tradeoffs simple

• Ultimately, the ISA will *not* be perfect



19

UTCS
CS352, S05

Lecture 6 37

Compiler can help Microarchitecture

• Instruction Scheduling
– Instruction Level Parallelism

• Resource Allocation
– Registers  (minimize spills/restores to and from memory)

• Memory optimizations
– Cache conscious data organization
– Code layout

• Etc…...

UTCS
CS352, S05

Lecture 6 38

Summary

• ISA principles
• Compiler/ISA interaction

• Next Time
– Simple processor datapath
– Reading assignment – P&H 5.1-5.4


