
1

UTCS Lecture 3 1

Lecture 3: Evaluating Computer Architectures

• Announcements
– Automatic drops – missing preq’s or repeating course
– HW #1 is due Tuesday Feb 1 (one week from today)

• Last Time – constraints imposed by technology
– Computer elements
– Circuits and timing

• Today
– Performance analysis

• Amdahl’s Law
• Performance equation

– Computer benchmarks

UTCS Lecture 3 2

How to design something:

• List goals
• List constraints
• Generate ideas for possible designs
• Evaluate the different designs
• Pick the best design
• Refine it

2

UTCS Lecture 3 3

Evaluation Tools

• Benchmarks, traces, & mixes
– macrobenchmarks & suites

• application execution time
– microbenchmarks

• measure one aspect of
performance

– traces
• replay recorded accesses

– cache, branch, register

• Simulation at many levels
– ISA, cycle accurate, RTL, gate,

circuit
• trade fidelity for simulation rate

• Area and delay estimation
• Analysis

– e.g., queuing theory

MOVE 39%
BR 20%
LOAD 20%
STORE 10%
ALU 11%

LD 5EA3
ST 31FF
….
LD 1EA2
….

UTCS Lecture 3 4

Evaluation metrics

• Metric = something we measure
• Goal: Evaluate how good/bad a design is
• Examples

– Execution time for a program
– Cycles per instruction
– Clock rate
– Power consumed by a program

3

UTCS Lecture 3 5

Different metrics for different purposes

• Chose a metric that’s appropriate for design level
• Examples

– Applications perspective
• Time to run task (Response Time)
• Tasks run per second (Throughput)

– Systems perspective
• Millions of instructions per second (MIPS)
• Millions of FP operations per second (MFLOPS)

– Bus/network bandwidth: megabytes per second
– Function Units: cycles per instruction (CPI)
– Fundamental elements (transistors, wires, pins): clock

rate

UTCS Lecture 3 6

Each metric has strengths and weaknesses

Actual Target Workload

Full Application Benchmarks

Small “Kernel”
Benchmarks

Microbenchmarks

Pros Cons

Slide courtesy of D. Patterson

4

UTCS Lecture 3 7

Each metric has strengths and weaknesses

Actual Target Workload

Full Application Benchmarks

Small “Kernel”
Benchmarks

Microbenchmarks

Pros Cons

• representative
• very specific
• non-portable
• difficult to run, or
measure

• hard to identify cause
• portable
• widely used
• improvements
useful in reality

• easy to run, early in
design cycle

• identify peak
capability and
potential bottlenecks

•less representative

• easy to “fool”

• “peak” may be a long
way from application
performance

Slide courtesy of D. Patterson

UTCS Lecture 3 8

Some Warnings about Benchmarks

• Benchmarks measure the
whole system
– application
– compiler
– operating system
– architecture
– implementation

• Popular benchmarks
typically reflect
yesterday’s programs
– what about the programs

people are running today?
– need to design for

tomorrow’s problems

• Benchmark timings are
sensitive
– alignment in cache
– location of data on disk
– values of data

• Danger of inbreeding or
positive feedback
– if you make an operation

fast (slow) it will be used
more (less) often

• therefore you make it
faster (slower)

– and so on, and so on…
– the optimized NOP

5

UTCS Lecture 3 9

Know what you are measuring!

• Compare apples to apples

• Example
– Wall clock execution time:

• User CPU time
• System CPU time
• Idle time (multitasking, I/O)

csh> time latex lecture2.tex
csh> 0.68u 0.05s 0:01.60 45.6%

% CPU time
elapsed

system
user

UTCS Lecture 3 10

Two notions of “performance”

° Time to do the task (Execution Time)
– execution time, response time, latency

° Tasks per day, hour, week, sec, ns. .. (Performance)
– throughput, bandwidth

Plane

Boeing 747

Concorde

Speed

610 mph

1350 mph

DC to Paris

6.5 hours

3 hours

Passengers

470

132

Throughput
(pmph)

286,700

178,200

Which has higher performance?

Slide courtesy of D. Patterson

6

UTCS Lecture 3 11

Tradeoff: latency vs. throughput

• Pizza delivery example
– Do you want your pizza hot?
– Or do you want your pizza to be inexpensive?
– Two different delivery strategies for pizza company!

In this course:
We will focus primarily on latency
(execution time for a single task)

UTCS Lecture 3 12

Definitions

• Performance is in units of things-per-second
– bigger is better

• If we are primarily concerned with response time
– performance(x) = 1

execution_time(x)

" X is n times faster than Y" means
Performance(X)

n = ----------------------
Performance(Y)

Slide courtesy of D. Patterson

7

UTCS Lecture 3 13

Brief History of Benchmarking

• Early days (1960s)
– Single instruction execution

time
– Average instruction time

[Gibson 1970]
– Pure MIPS (1/AIT)

• Simple programs(early 70s)
– Synthetic benchmarks

(Whetstone, etc.)
– Kernels (Livermore Loops)

• Relative Performance (late 70s)
– VAX 11/780 ≡ 1-MIPS

• but was it?
– MFLOPs

• “Real” Applications (late
80s-now)
– SPEC

• Scientific
• Irregular

– TPC
• Transaction Processing

– Winbench
• Desktop

– Graphics
• Quake III, Doom 3
• MediaBench

UTCS Lecture 3 14

SPEC: Standard Performance Evaluation Corporation
(www.spec.org)

• System Performance and Evaluation Cooperative
– HP, DEC, Mips, Sun
– Portable O/S and high level languages

• Spec89 ⇒ Spec92 ⇒ Spec95 ⇒ Spec2000 ⇒
• Categories

– CPU (most popular)
– JVM
– SpecWeb - web server performance
– SFS - file server performance

• Benchmarks change with the times and technology
– Elimination of Matrix 300
– Compiler restrictions

8

UTCS Lecture 3 15

How to Compromise a Benchmark

0

100

200

300

400

500

600

700

800

gcc spice nasa7 matrix300 fpppp

Sp
ec

89
 P

er
fo

rm
an

ce
 R

at
io

compiled
enhanced

UTCS Lecture 3 16

The compiler reorganized the code!

• Change the memory system performance
– Matrix multiply cache blocking

Before

After

9

UTCS Lecture 3 17

Spec2000 Suite

• 12 Integer benchmarks
(C/C++)
– compression
– C compiler
– Perl interpreter
– Database
– Chess

• 14 FP applications
(Fortran/C)
– Shallow water model
– 3D graphics
– Quantum chromodynamics
– Computer vision

• Characteristics
– Computationally

intensive
– Little I/O
– Small code size
– Variable data set sizes

UTCS Lecture 3 18

SPEC Leaders (4/00)

Intel AMD Compaq Sun IBM HP
Pentium III Athlon Alpha 21264 Ultra-2 Power3 PA-8600

Clock rate 1000MHz 1000 MHz 700MHz 450MHz 400MHz 552MHz
Issue rate 3 x86 3 x86 4 4 4 4
Cache (I/D) 16/16/256K 64K/64K 64K/64K 16K/16K 32K/64K 512K/1M
transistors 24 million 22 million 15.2 million 3.8 million 23 million 130 million
Technology 0.18µm 0.18µm 0.25µm 0.29µm 0.22µm 0.25µm
Die Size 106mm2 102mm2 205mm2 126mm2 163mm2 477mm2

Estimated mfg. Cost $40 $70 $160 $70 $110 $330
SPECint95 46.6 42.0 34.7 16.2 23.5 38.4
SPECfp95 31.9 29.4 54.5 24.6 46.0 61.0

12/2003: AMD Opteron 148, 2.0 GHz:
SPECint2000base 16.3
SPECfp2000base 17.5

10

UTCS Lecture 3 19

Transaction-based Systems

UTCS Lecture 3 20

TPC - Transaction Processing Council

• Established in 1988

• Measure whole system performance and cost
– Maximum TPS (transactions per second)
– $/TPS

• Test specifies high level functional requirements
– Independent of platform

• Workload scales
• Transaction rate constrained by response time

requirement
– 90% of transactions complete in < 2 seconds

11

UTCS Lecture 3 21

TPC-C: OLTP

• W warehouses
• 10 districts/warehouse
• 3,000 customers/district
• 100,000 items

• 10 items per order
• 1% not in stock at regional warehouse
• Frequent reads and writes

UTCS Lecture 3 22

TPC-C Results (8/00)

• IBM Netfinity 8500R
– Platform

• 32 servers, 4 CPUs each
• 700MHz PentiumIII - Xeon
• 128 GB memory
• 4TB disk
• Windows 2000 server
• IBM DB2 database server
• 368,640 users

– Results
• Cost: $14.2M
• Throughput: 440K tpm
• Price/perf: $32/tpm

• Compaq ProLiant ML570
– Platform

• 2 servers, 3 CPUs
• 700MHz PentiumIII - Xeon
• 2.5 GB memory
• 1.5TB disk
• Windows 2000 server
• Microsoft SQL
• 16,200 users

– Results
• Cost: $200K
• Throughput: 20K tpm
• Price/perf: $10/tpm

12

UTCS Lecture 3 23

Desktop/Graphics Benchmarks

• WinStone
– Corel WordPerfect suite, Lotus Smartsuite, Microsoft

Office
– High end: Photoshop

• CPU Mark99
– Synthetic benchmark - tests CPU, caches, external

memory

• 3DMark2003
– Synthetic benchmark for 3-D rendering

UTCS Lecture 3 24

Improving Performance: Fundamentals

• Suppose we have a machine with two instructions
– Instruction A executes in 100 cycles
– Instruction B executes in 2 cycles

• We want better performance….
– Which instruction do we improve?

13

UTCS Lecture 3 25

Amdahl’s Law

• Performance improvements depend on:
– how good is enhancement (factor S)
– how often is it used (fraction p)

• Speedup due to enhancement E:

Ew/out Perf
E w/ Perf

Ew/ ExTime
E w/out ExTime Speedup(E) ==

() ⎥⎦
⎤

⎢⎣
⎡ +−∗=

S
ppExTimeExTime oldnew 1

()
S
ppExTime

ExTimeESpeedup
new

old

+−
==

1

1)(

UTCS Lecture 3 26

Amdahl’s Law: Example

• FP instructions improved by 2x
• But….only 10% of instructions are FP

• Speedup bounded by

oldoldnew ExTimeExTimeExTime ∗=⎟
⎠
⎞

⎜
⎝
⎛ +∗= 95.0

2
1.09.0

053.1
95.0
1

==totalSpeedup

enhancednot timeoffraction
1

14

UTCS Lecture 3 27

Amdahl’s Law: Example 2

• Speed up vectorizable code by 100x

⎥⎦
⎤

⎢⎣
⎡ +−=

S
ppTT)1(01

Speedup vs. Vector Fraction

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of code vectorizable

Sp
ee

du
p

UTCS Lecture 3 28

Amdahl’s Law: Summary message

• Make the common case fast

• Examples:
– All instructions require instruction fetch, only fraction

require data
⇒ optimize instruction access first

– Data locality (spatial, temporal), small memories faster
⇒storage hierarchy: most frequent accesses to small,

local memory

15

UTCS Lecture 3 29

CPU Performance Equation

• 3 components to execution time:

• Factors affecting CPU execution time:

Cycle
Seconds

nInstructio
Cycles

Program
nsInstructio

Program
Seconds timeCPU ∗∗==

Inst. Count CPI Clock Rate
Program X
Compiler X (X)
Inst. Set X X (X)
Organization X X
MicroArch X X
Technology X

• Consider all three elements when optimizing
• Workloads change!

UTCS Lecture 3 30

Cycles Per Instruction (CPI)

• Depends on the instruction

• Average cycles per instruction

• Example:

∑
=

=∗=
n

i tot

i
iii IC

ICFFCPICPI
1

 where

Op Freq Cycles CPI(i) %time
ALU 50% 1 0.5 33%
Load 20% 2 0.4 27%
Store 10% 2 0.2 13%
Branch 20% 2 0.4 27%

CPI(total) 1.5

RateClock n instructiooftimeExecution ∗= iCPIi

16

UTCS Lecture 3 31

Comparing and Summarizing Performance

• Fair way to summarize performance?
• Capture in a single number?

• Example: Which of the following machines is
best?

Computer A Computer B Computer C
Program 1 1 10 20
Program 2 1000 100 20
Total Time 1001 110 40

UTCS Lecture 3 32

Means

Arithmetic mean

Harmonic mean

Geometric mean

∑
=

n

i
iT

n 1

1

∑
=

n

i iR

n

1

1

nn

i ri

i

T
T

1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∏
=

Can be weighted: aiTi
Represents total execution time

Ri = 1/Ti

Good for mean of ratios,
where the ratio is with respect to a reference.

17

UTCS Lecture 3 33

Platform Performance Trends

Microprocessors

Minicomputers

Mainframes
Supercomputers

1995
Year

19901970 1975 1980 1985

Lo
g

of
 P

er
fo

rm
an

ce

UTCS Lecture 3 34

Is Speed the Last Word in Performance?

• Depends on the application!
• Cost

– Not just processor, but other components (ie. memory)
• Power consumption

– Trade power for performance in many applications
• Capacity

– Many database applications are I/O bound and disk
bandwidth is the precious commodity

18

UTCS Lecture 3 35

Summary

• Best benchmarks are real programs
– Spec, TPC, Doom3

• Pitfalls still exist
– Whole system measurement
– Workload may not match user’s

• Key concepts
– Throughput and Latency
– Equations: CPI, Amdahl’s Law, …

• Next time
– Instruction set architectures (ISA)
– Read P&H 2.1 – 2.6

