CS 352: Computer Systems Architecture

Lecture I:
What is Computer Architecture?

January 18, 2005

William R. Mark
Computer Sciences Department
University of Texas at Austin
billmark@cs.utexas.edu

uTCcsS Lecture 1

Questions we'll address in this course

 How do we separate software from hardware?
- So that new computers can run old software

* How is computer hardware organized?
- Processor, Memory, I/0, etfc.

* How is the processor organized? Why?
* How do we measure computer performance?

+ How do we think about concurrent programming?
- Doing more than one thing at once

uTCS Lecture 1

Logistics

Lectures T/Th 3:30-5:00, UTC 4.112

Instructor Prof. William R. Mark

TA Chris Lundberg

Grading Final Exam 1 35%
Midterm Exam 1 25%
Homework ~7 15%
Project 1 25%

Text Hennessy & Patterson, Computer

Organization and Design (Third Edition)

uTCcS Lecture 1

€S352 Online

URL: www.cs.utexas.edu/~billmark/
teach/cs352-05-spring

email list: cs352-mark@cs . utexas. edu

subscribe by sending email fo TA
(mandatory - see web page for details)

Computer Architecture Seminar Series:
www.cs.utexas.edu/users/cart/arch

uTCS Lecture 1

Why might this course be useful?

uTCcS Lecture 1

Some reasons you might care

First, the obvious possibilities...

* You become a CPU architect
- Unlikely for most of you!

* You design other computer hardware
- The basic concepts and techniques are the same

* You design compilers, OS's, Java runtimes, etc.
- These interact with computer hardware

uTCS Lecture 1

Less obvious (but more likely) reasons

* You write software
- And care if it runs fast
- And care if it is secure
* You design any kind of complex system
- Design tradeoffs
- System interfaces
- Quantitative analysis of performance, cost, etc.
* You want to purchase a fast computer
- And want to be an informed consumer
* You are curious about how computers work
- Perhaps the best reason

UTCcS Lecture 1 7
Specification compute the fibonacci sequence
for(i=2; i<100; i++) {
Program alil = ali-1l+ali-21;}
i1, CS 310
ISA (I - Al load rl1, alil; '
SA (Instruction Set Architecture) add 2. 2, 1: CS 352
ADD
R1
microArchitecture R2 coss2
Logic %}D' F EE 316
Transistors —||fI =) 3 l(

Physics/Chemistry I = C dV/dt

uTCS Lecture 1

€5352 Topics

Underlying technology trends
Instruction set architectures
Microarchitecture

- Pipelining

- Instruction level parallelism
Cache memory systems

Virtual memory

I/0

Multiprocessors and parallelism
Security

Computer system implementation

uTCcS Lecture 1

What is Computer Architecture?

Technology

s, _
“ym

Applications

Computer
Architect

uTCS Lecture 1

(=)
g £
<|2 5 S

_ Interfaces J

(IR 1 \

i

\Machine Organization/

.

fﬂ\/)

Measurement &
Evaluation

J

10

How to design something:

« List goals

* List constraints

+ Generate ideas for possible designs
+ Evaluate the different designs

+ Pick the best design

+ Refine it

In readlity, this process is iterative.
As constraints change, best design will change too.
[Use kitchen remodel as example of design process]

uTCcS Lecture 1 11

Design goals for an architecture

uTCS Lecture 1 12

Design goals for an architecture

High performance

- Computation

- Storage capacity

- Communication speed

Low cost

- To manufacture, AND to design.
Easy to program
Compatibility and Longetivity
- Run existing programs - fast today, faster fomorrow.
Security and Reliability

Low power consumption

- For laptops, cell phones, etc.
- Even for desktop CPUs!

UTCS Lecture 1 13

Possible design constraints for architecture

uTCS Lecture 1 14

Possible design constraints for architecture

* Maximum cost

* Maximum power comsumption
* Backward compatibility

+ Time to market

- Etc.

UTCcS Lecture 1 15

Technology Constraints

Yearly improvement
- Semiconductor technology
+ 60% more devices per
chip
(doubles every 18 months)
+ 15% faster devices
(doubles every 5 years)
+ Slower wires
- Magnetic Disks
+ 60% increase in density
- Circuit boards
+ 5% increase in wire
density
- Cables

+ no change

100x more devices since 1989
8x faster devices

uTCS Lecture 1 16

Changing Technology leads to
Changing Architecture

+ 1970s + 1990s
- multi-chip CPUs - lots of transistors
- semiconductor memory - complex control to exploit
very expensive instruction-level
- microcoded control parallelism
- complex instruction sets - 2000s
(good code density) - even more transistors
+ 1980s - slow wires
- single-chip CPUs, on-chip - single-chip
RAM feasible multiprocessors

uTCs

simple, hard-wired control
simple instruction sets
small on-chip caches

Lecture 1

17

Intel 4004 - 1971

* The first
microprocessor

« 2,300 transistors

- 108 KHz
*+ 10um process

Lecture 1

18

Intel Pentium IV - 2001

- “State of the art”
- Three years ago!

« 42 million transistors
- 2GHz
* 0.13um process

+ Could fit ~15,000
4004s on this chip!

UTCcS Lecture 1 19

Many kinds of systems and applications

Personal:

- Desktop, Laptop

- Cell phone / PDA

- Game machine
Server:

- Web servers

- Transaction processing
Engineering/Scientific:
- Weather simulation

- Drug design Y.
Embedded Control: ‘@%

- Anti-lock brake system
- Microwave oven

uTCS Lecture 1 20

What is an “interface"”

- Interfaces are visible,
Implementations aren't
- Same interface can have multiple implementations
- We allow performance (time behavior) to change!
+ Example interfaces:
- Ethernet connector / protocol
- X86 architecture
- Java language
- Example NON-interfaces
- Power connector for cell phone charger

+ Good interfaces are simple

uTCcsS Lecture 1 21

Several kinds of interfaces

- Between system layers

- Programming language

- API

- ISA
* Between modules

- Network protocol (Ethernet)

- I/0 channel or bus (SCSI or PCI)
+ Standard representations

- ASCII

- IEEE floating-point

uTCS Lecture 1 22

11

Instruction-Set Architecture

Hardware/Software Interface

Software impact

- support OS functions | opP | il | R2 | 2 | i

+ restartable instructions
+ memory relocation and

protection
- agood compiler target
+ simple .
+ orthogonal | oF | |M1| Rll |M2| R2| iz |
- dense
Hardware impact [ma]Rs| Juz2 EEE
- admits efficient implementation
* across generations
- admits parallel implementation
* no 'serial’ bottlenecks
Abstraction without
interpretation
uTCcsS Lecture 1 23

System-Level Organization

Design at the level of
processors, memories, and
interconnect. p | 800MHz
More important to application A-way Issue
performance than CPU design 16Bytes x

Feeds and speeds 200MHz [Display

- constrained by IC pin count,
module pin count, and signaling Net

rates e o ‘
System balance |

- for a particular application
Driven by
- performance/cost goals

- available components
(cost/perf)

- technology constraints

uTCcS Lecture 1 24

12

Microarchitecture

+ Register-transfer-level (RTL)
design
Implement instruction set
+ Exploit capabilities of technology
- locality and concurrency

PC

Instr.
Cache

Iterative process
- generate proposed architecture
- estimate cost
- measure performance
+ Current emphasis is on overcoming
sequential nature of programs
- deep pipelining Regs
- multiple issue

- dynamic scheduling
- branch prediction/speculation

uTCcS Lecture 1

25

The Architecture Process

Estimate
— Cost & Sort
Performance

New concepts created

Bad ideas Mediocre ideas

uTCS Lecture 1

Good
ideas

26

13

Performance Measurement and Evaluation

Many Dimensions to Performance

CPU execution time P
- by instruction or sequence
- floating point |
+ integer
+ branch performance $
Cache bandwidth
Main memory bandwidth |
+ I/O performance
- bandwidth
- seeks
- pixels or polygons per second
Relative importance depends
on applications

uTcS Lecture 1

27

Evaluation Tools

- Benchmarks, traces, & mixes
- macrobenchmarks & suites MOVE 39%

el A BR 20%
+ application execution time LOAD 20%
- microbenchmarks STORE 10%
ALU 11%
* measure one aspect of
performance
. LD 5EA3
races ST 31FF

* replay recorded accesses

+ cache, branch, register LD 1EA2
+ Simulation at many levels
- ISA, cycle accurate, RTL, gate, | |_
circuit
+ trade fidelity for simulation rate g
+ Area and delay estimation —
+ Analysis
- e.g., queuing theory -{[[D—O-‘
uTCs Lecture 1

28

14

Don't forget the simple view

All a computer does is
- Store and move data
- Communicate with the external world
- Do these two things conditionally
- According to a recipe specified by a programmer

It's complex because

We want it to be fast

We want it to be reliable and secure
We want it to be simple to use

It must obey the laws of physics

uTcS Lecture 1 29
Next Time
+ Evaluation of Systems
- Performance
+ Amdahl's Law, CPI
- Cost

 Computer system elements
- Transistors and wires

* Reading assignment
- P&H Chapter 1

uTCS Lecture 1 30

15

