CS 352: Computer Systems Architecture

Lecture 1: What is Computer Architecture?

January 18, 2005

William R. Mark
Computer Sciences Department
University of Texas at Austin
billmark@cs.utexas.edu

UTCS Lecture 1

Questions we'll address in this course

- How do we separate software from hardware?
 - So that new computers can run old software
- How is computer hardware organized?
 - Processor, Memory, I/O, etc.
- · How is the processor organized? Why?
- · How do we measure computer performance?
- · How do we think about concurrent programming?
 - Doing more than one thing at once

Logistics

Lectures T/Th 3:30-5:00, UTC 4.112

Instructor Prof. William R. Mark

TA Chris Lundberg

Grading Final Exam 1 35%

Midterm Exam 1 25% Homework ~7 15% Project 1 25%

Text Hennessy & Patterson, Computer

Organization and Design (Third Edition)

UTCS Lecture 1 3

CS352 Online

URL: www.cs.utexas.edu/~billmark/

teach/cs352-05-spring

email list: cs352-mark@cs.utexas.edu

subscribe by sending email to TA

(mandatory - see web page for details)

Computer Architecture Seminar Series:

www.cs.utexas.edu/users/cart/arch

Why might this course be useful?

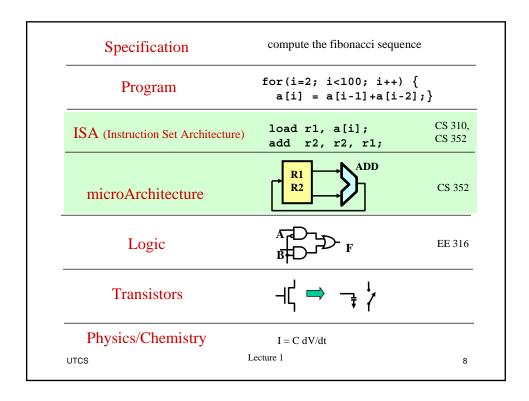
UTCS

Lecture 1

Some reasons you might care

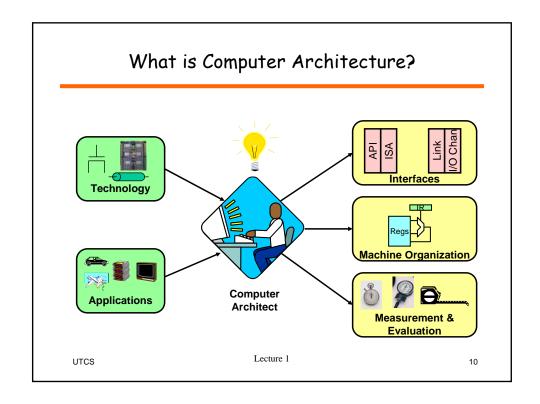
First, the obvious possibilities...

- · You become a CPU architect
 - Unlikely for most of you!
- · You design other computer hardware
 - The basic concepts and techniques are the same
- · You design compilers, OS's, Java runtimes, etc.
 - These interact with computer hardware


UTCS

Lecture 1

6


Less obvious (but more likely) reasons

- · You write software
 - And care if it runs fast
 - And care if it is secure
- · You design any kind of complex system
 - Design tradeoffs
 - System interfaces
 - Quantitative analysis of performance, cost, etc.
- · You want to purchase a fast computer
 - And want to be an informed consumer
- · You are curious about how computers work
 - Perhaps the best reason

CS352 Topics

- Underlying technology trends
- · Instruction set architectures
- Microarchitecture
 - Pipelining
 - Instruction level parallelism
- Cache memory systems
- Virtual memory
- · I/O
- · Multiprocessors and parallelism
- Security
- · Computer system implementation

How to design something:

- · List goals
- · List constraints
- · Generate ideas for possible designs
- · Evaluate the different designs
- · Pick the best design
- · Refine it

In reality, this process is iterative.

As constraints change, best design will change too.

[Use kitchen remodel as example of design process]

UTCS Lecture 1 1

Design goals for an architecture

Design goals for an architecture

- High performance
 - Computation
 - Storage capacity
 - Communication speed
- Low cost
 - To manufacture, AND to design.
- · Easy to program
- Compatibility and Longetivity
 - Run existing programs fast today, faster tomorrow.
- Security and Reliability
- · Low power consumption
 - For laptops, cell phones, etc.
 - Even for desktop CPUs!

UTCS Lecture 1 13

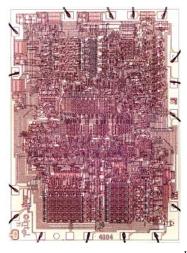
Possible design constraints for architecture

Possible design constraints for architecture

- Maximum cost
- Maximum power comsumption
- Backward compatibility
- · Time to market
- Etc.

UTCS Lecture 1 15

Technology Constraints Yearly improvement - Semiconductor technology · 60% more devices per 1989 1992 (doubles every 18 months) • 15% faster devices (doubles every 5 years) Slower wires 1995 - Magnetic Disks · 60% increase in density - Circuit boards 1998 • 5% increase in wire density - Cables 2002 · no change 100x more devices since 1989 8x faster devices Lecture 1 UTCS 16


Changing Technology leads to Changing Architecture

- 1970s
 - multi-chip CPUs
 - semiconductor memory very expensive
 - microcoded control
 - complex instruction sets (good code density)
- 1980s
 - single-chip CPUs, on-chip RAM feasible
 - simple, hard-wired control
 - simple instruction sets
 - small on-chip caches

- · 1990s
 - lots of transistors
 - complex control to exploit instruction-level parallelism
- · 2000s
 - even more transistors
 - slow wires
 - single-chip multiprocessors

UTCS Lecture 1 17

Intel 4004 - 1971

- The first microprocessor
- 2,300 transistors
- 108 KHz
- 10μm process

Intel Pentium IV - 2001

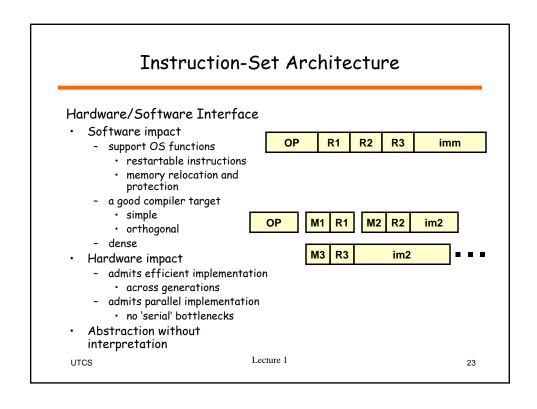
- "State of the art"
 - Three years ago!
- 42 million transistors
- · 2GHz
- 0.13μm process
- Could fit ~15,000 4004s on this chip!

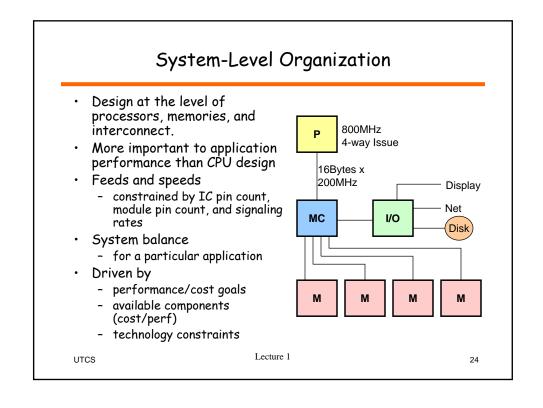

19

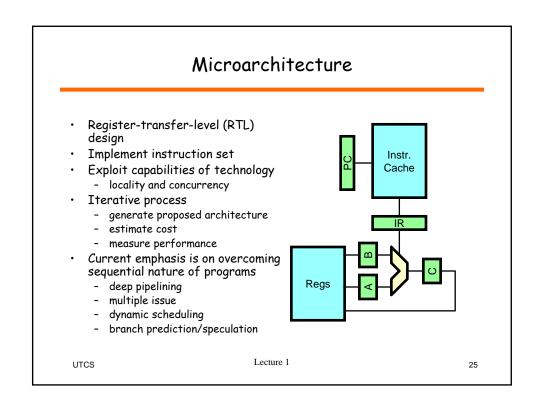
CS Lecture I

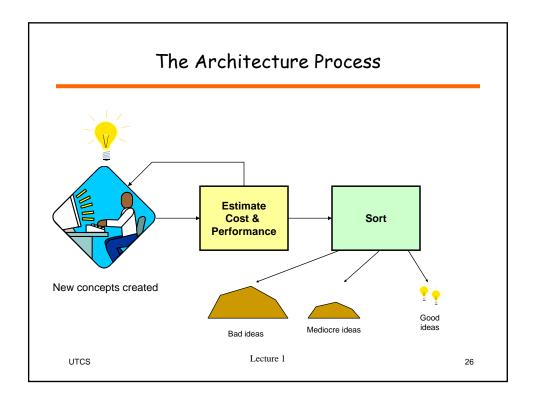
Many kinds of systems and applications

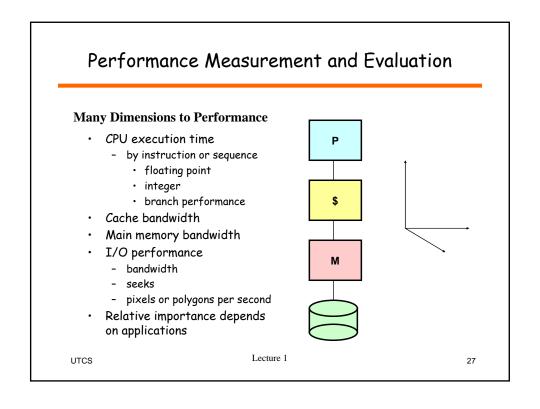
- Personal:
 - Desktop, Laptop
 - Cell phone / PDA
 - Game machine
- Server:
 - Web servers
 - Transaction processing
- Engineering/Scientific:
 - Weather simulation
 - Drug design
- Embedded Control:
 - Anti-lock brake system
 - Microwave oven

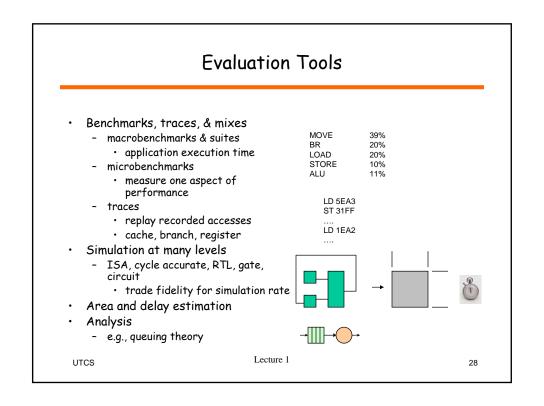

What is an "interface"


- Interfaces are visible, Implementations aren't
 - Same interface can have multiple implementations
 - We allow performance (time behavior) to change!
- · Example interfaces:
 - Ethernet connector / protocol
 - X86 architecture
 - Java language
- Example NON-interfaces
 - Power connector for cell phone charger
- · Good interfaces are simple


UTCS Lecture 1 21


Several kinds of interfaces


- Between system layers
 - Programming language
 - API
 - ISA
- Between modules
 - Network protocol (Ethernet)
 - I/O channel or bus (SCSI or PCI)
- Standard representations
 - ASCII
 - IEEE floating-point



Don't forget the simple view

All a computer does is

- Store and move data
- Communicate with the external world
- Do these two things conditionally
- According to a recipe specified by a programmer

It's complex because

- We want it to be fast
- We want it to be reliable and secure
- We want it to be simple to use
- It must obey the laws of physics

UTCS Lecture 1 29

Next Time

- Evaluation of Systems
 - Performance
 - · Amdahl's Law, CPI
 - Cost
- · Computer system elements
 - Transistors and wires
- Reading assignment
 - P&H Chapter 1