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ABSTRACT

Construction of effective acceleration structures for ray tracing is
a well studied problem. The highest quality acceleration structures
are generally agreed to be those built using greedy cost optimiza-
tion based on a surface area heuristic (SAH). This technique is most
often applied to the construction of kd-trees, as in this work, but is
equally applicable to the construction of other hierarchical acceler-
ation structures. Unfortunately, SAH-optimized data structure con-
struction has previously been too slow to allow per-frame rebuilding
for interactive ray tracing of dynamic scenes, leading to the use of
lower-quality acceleration structures for this application. The goal
of this paper is to demonstrate that high-quality SAH based accel-
eration structures can be constructed quickly enough to make them
a viable option for interactive ray tracing of dynamic scenes.

We present a scanning-based algorithm for choosing kd-tree split
planes that are close to optimal with respect to the SAH criteria.
Our approach approximates the SAH cost function across the spa-
tial domain with a piecewise quadratic function with bounded er-
ror and picks minima from this approximation. This algorithm
takes full advantage of SIMD operations (e.g., SSE) and has fa-
vorable memory access patterns. In practice this algorithm is faster
than sorting-based SAH build algorithms with the same asymptotic
time complexity, and is competitive with non-SAH build algorithms
which produce lower-quality trees. The resulting trees are almost
as good as those produced by a sorting-based SAH builder as mea-
sured by ray tracing time. For a test scene with 180k polygons our
system builds a high-quality kd-tree in 0.26 seconds that only de-
grades ray tracing time by 3.6% compared to a full quality tree.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing
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1 INTRODUCTION

Recent algorithmic improvements in ray tracing have made in-
teractive and even real-time ray tracing a reality on modern pro-
cessors. The fastest systems, however, are all restricted to static
walkthroughs without fully dynamic geometric content. This lim-
itation is imposed by the systems’ reliance on pre-computed kd-
trees that are cost optimized using the surface area heuristic (SAH)
[6, 13, 8]. These data structures have generally been too expensive
to re-compute each frame for all but very small models. Attempts
have been made to speed up the process of optimized kd-tree con-
struction [21] but these have met with limited success. The commu-
nity has instead tended toward abandoning SAH-optimized kd-trees
in favor of structures that can be rebuilt very rapidly, such as uni-
form grids or less-optimized trees, or that can be updated for some
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forms of animation rather than completely rebuilt, such as BVHs
[20, 22, 12, 18]. Although such structures typically have poorer
traversal performance, the improvement in build performance has
been enough to overcome this disadvantage.

For many applications, a rendering system must perform at real-
time frame rates and support fully dynamic scenes. If optimized kd-
tree construction were sufficiently fast, fast kd-tree-based ray trac-
ing algorithms such as MLRTA [16] could be leveraged for these
applications. We present a fast scanning-based approach for con-
structing kd-trees that are nearly optimal according to the SAH. The
approach takes a fixed number of well-chosen points at which to
evaluate the SAH cost function and produces a piecewise quadratic
approximation of the split-cost function from which a minimum
can be obtained. The points are chosen in such a way that the dif-
ference between the approximation and the actual cost function is
bounded. The scanning technique takes full advantage of SIMD op-
erations (e.g., SSE) and has favorable memory access patterns, and
in practice outperforms current approaches that use sorting. Be-
cause the approximation may be computed so quickly, for scenes
with large numbers of polygons the slight increase in trace time is
more than made up for by the decrease in kd-tree construction time.
This algorithm assumes the kd-tree is constructed from a “soup” of
axis-aligned bounding boxes (AABBs). Each AABB may contain
one or more triangles or any other desired leaf geometry.

Our analysis and implementation focus on kd-trees, and the most
immediate contribution is the demonstration that SAH-optimized
kd-trees are a viable acceleration structure for dynamic scenes.
However, the techniques described in this paper are directly appli-
cable to the construction of other high-quality acceleration struc-
tures based on the surface area heuristic. Examples include
SAH-optimized bounding-volume hierarchies [20] and B-KD trees
[24, 18]. The most important conclusion from this paper is that ac-
celeration structures for interactive ray tracers can and should be
built using a good approximation to the SAH.

2 BACKGROUND

The traditional algorithm for building a kd-tree (summarized in
[14]) is a greedy, top-down algorithm using the SAH to evaluate
split candidates. Given a split candidate, SAH is a heuristic that
takes into account both the probability of a ray hitting each child
and the cost of visiting each child. The split with lowest cost across
all split candidates is compared to the cost of not splitting. If the
cost of splitting is less than the cost of not splitting, the current
voxel is split into two children. Otherwise, a leaf node is created
in the tree. Splits chosen using this cost function produce trees that
have proven to be extremely effective for fast ray-tracing. The cost
function cost(x) [6, 13, 8] itself used by the SAH is defined as fol-
lows:

cost(x) = C1+Cp(x) S?f\it;) +Cr(x) S’gf\—((‘;’;)

Where Cj is the (constant) cost of traversing the node itself,
Cr(x) is the cost of the left child given a split a position x and
Cr(x) is the cost of the right child given the same split. SAz(v,x)
and SAg (v, x) are the surface areas of the left and right children re-

spectively. SA(v) is the surface area of the voxel currently being

considered for splitting. The ratio ng?:;? and 8227((:;) can be in-




terpreted as the probabilities of intersecting the left and right child
respectively given that a ray has intersected the current node.

The split candidates are defined by the geometry that is being
partitioned. In this paper we will assume that each piece of geome-
try is contained within an axis aligned bounding box (AABB). The
upper and lower bounds of each AABB make up the list of candi-
date splits. In this case Cy (x) and Cg(x) are equal to the number of
AABB:s that overlap the left and right children respectively

The difficult part in evaluating the cost function for a given can-
didate x is in the evaluation of Cy(x) and Cgr(x). When evaluating
all split candidates, this task is simplified greatly if all of the splits
are sorted with respect to their position (in one dimension) because
a linear scan can keep track of the number of AABBs to the left
of this split position and how many overlap it. This information is
enough to derive Cp, and Cg. Traditionally, the split candidates are
sorted each time a new split is required, leading to an n”logn tree-
building algorithm. A variant described by [21] and [4] does all of
the sorting up front and achieves a better bound of nlogn. With
even modest amounts of geometry, any sort is still expensive if it is
to be computed each frame.

Another approach is to evaluate split candidates at arbitrary
planes in space rather than at the boundaries of the AABBs
[10, 9, 15]. The algorithm in this paper differs from previous ap-
proaches in this area in two primary ways: first, we choose split
candidates adaptively, making more efficient use of each candidate.
Second, we do not use the splits evaluated as candidates but instead
as sample points for an approximation function from which a can-
didate is derived.

Regular grids and BVHs have recently been used in several inter-
active ray-tracing systems [20, 22, 12, 18]. The primary motivation
for these approaches has been fast build and update time. Wald, et
al. [22] discuss a grid based approach which re-builds the grid each
frame. Grid acceleration structures are very fast to compute but can-
not easily adapt to scenes with varied geometric density. Although
major improvements have recently been made for grid accelera-
tion structures [22], they still typically perform somewhat worse
for traversal than kd-trees, particularly for less-coherent secondary
rays. BVHs have also been studied for interactive ray tracing with
some promising results. The key advantage for BVH based acceler-
ation structures for real-time applications is that a fast update proce-
dure exists. Drawbacks with this approach are that updates can only
be used for a limited class of animation (e.g. deformation), and that
tree quality can degrade over time. Both of these drawbacks can be
addressed using full rebuilds of the tree, and rebuilding a BVH with
high quality (e.g. SAH-optimized) is closely related to the problem
addressed in this work.

3 EVALUATING THE COST FUNCTION:
SORTING VS. SCANNING

Any algorithm that builds an acceleration structure using SAH cost
must evaluate the cost function at various locations.

To evaluate the cost function at a particular location, we must
know:

1. The location of the split plane (which allows us to compute the
volumes of the left and right nodes, and hence the probability
of hitting them)

2. How many primitives are to the left

3. How many primitives are to the right

Tasks #2 and #3 are expensive.

There are two basic algorithms for evaluating the cost function.
For each, we assume that we have m AABBs at a particular node,

and that we wish to evaluate the cost function at ¢ different locations
along a single axis of that node.

Sorting approach: The sorting approach consists of two phases.
In the first phase, the primitives are sorted along the axis, at a cost of
O(mlogm). In the second phase, the cost function can be evaluated
for any number of desired locations with only a single pass over the
sorted data, at a cost of O(m). For the kd-tree as a whole, the cost
of this approach is O(n logzn), but by preserving and reusing the
results of the top-level O(nlogn) sort, the total cost can be reduced
to O(nlogn) [21].

Scanning approach: The scanning approach evaluates the cost
function at just a single location. In its simplest form, the algo-
rithm must be repeated to evaluate the cost function at more than
one location. For each location, the algorithm loops over all of the
primitives. At each primitive, it checks to see if the primitive lies
to the left and/or to the right, and then increments the appropriate
counter(s). Thus, to evaluate the cost function at a single location,
the cost of this approach is O(m). For g locations, the cost is O(mgq).
If we set g to a constant (e.g., eight), then the approach is O(m) for
each node, and for the tree as a whole the cost will be O(nlogn).

From asymptotic analysis, it would appear that the costs of the
two approaches are equivalent. Since the sorting approach evaluates
the cost function at every AABB rather than just a fixed number of
locations, it would initially appear to be the better approach.

However, there are several practical advantages of the scanning
approach. First, it is very simple and thus the constant factors in
its cost can be very small, especially when the implementation is
well-tuned (as described later in this paper). Second, the scanning
approach defers more of its work to the leaf nodes.

Deferring work to the leaf nodes has two advantages. First, it
may be the case that we do not need to build all of the leaf nodes.
If a system builds the acceleration structure lazily (as described,
for example, in [3, 17]) then it can skip a large amount of work.
In contrast, the sorting approach still must do an O(nlogn) sort at
the top level. The results reported in this paper do not use lazy
building, but we hope to report such results in a future publication.
Second, the scanning approach performs well at higher levels of the
tree where the data set does not fit in cache, whereas the constant
factors on sorting algorithms are generally worse for such large data
sets. In particular, the linear and read-only memory access pattern
of the scanning approach allows the hardware prefetcher in modern
CPUs to work very effectively.

4 APPROXIMATING THE COST FUNCTION WITH A FEW
SAMPLES

The scanning approach to evaluating the cost function can perform
better than the sorting approach if the number of locations at which
the cost function is evaluated is small. Fortunately, a small number
of locations is generally sufficient to build a high-quality kd-tree.
For example, Hurley, et al. [10] found that there was very little
benefit to using more than thirty-two candidate split locations.

In previous work, split planes have been restricted to lying on the
locations at which the cost function has been evaluated [10, 18, 9,
15]. We show that it is possible to use a small number of evaluations
of the cost function to generate an approximation of the true cost
function. The final split plane is then positioned at the minimum
of the approximate cost function. Thus, the location of the final
split plane is not restricted to a fixed number of locations. Figure 1
illustrates this idea.

A good approximation to the full surface area heuristic must
meet two criteria. First, it must significantly reduce the time re-
quired to build the acceleration structure. We assess this criteria
with execution-time measurements for our algorithm. Second, it
should not significantly reduce the quality of the acceleration struc-
ture.
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Figure 1: The split plane is placed at the minimum of a piecewise
quadratic function that interpolates the sample points. Note that we
have vertically displaced the approximation function from the actual
function so that the details of both can be seen.

We assess the quality of the acceleration structure in three ways:
First, we measure the increase in ray tracing time that results from
using our approximate tree instead of one built using the full SAH.
Second, we measure the degradation in SAH tree quality according
the SAH cost equation. Finally, in Appendix A we address quality
mathematically, by analyzing the behavior of the SAH cost func-
tion and deriving analytical bounds on the error that results from
evaluating it at a fixed number of locations.

5 ADAPTIVELY CHOOSING SAMPLE LOCATIONS

Previous approaches that approximate the cost function have cho-
sen uniformly spaced samples, as shown in Figure 2.

In this paper, we show that it is possible to achieve a better ap-
proximation to the cost function by adaptively choosing sample lo-
cations. This approach has been independently suggested (but not
implemented) by Popov, et al. [15].

Figures 2 and 4 illustrate how we choose samples adaptively. In
a first phase, 50% of our sample budget is used to uniformly sample
the function. In a second phase, the remaining 50% of our sample
budget is used to adapatively sample the function in locations where
there is the greatest uncertainty about the behavior of the function.

5.1 Error bounds

For the purpose of discussing error bounds, it is useful to distin-
guish between the greedy SAH cost, and the true SAH cost. The
true SAH cost recursively considers costs at all child nodes, but can
only be evaluated after the entire sub-tree has been built. In con-
trast, the greedy SAH cost terminates its recursion for cost evalua-
tion after one split, and ignores the effects of deeper tree structure.

It should be clear that our approximation is very effective in
cases where the greedy cost function is smoothly varying as is typ-
ical near the top of the acceleration structure. In such smoothly-
varying cases, the approximate cost function used by our algorithm
closely matches the actual greedy cost function at all points. Thus,
the greedy cost of the split plane chosen by our algorithm is very
close to the greedy cost of the optimal split plane.

Itis less obvious how well our algorithm performs in cases where
the cost function has discontinuities. For example, if the portion of
the scene in question contains an axis-aligned wall with many poly-
gons, the actual greedy cost function may be a step function or hat
function. This is visible in the example diagrams on the left side.
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Figure 2: The initial samples as shown on C, —Cg

In such cases, the greedy cost of the split plane chosen by our algo-
rithm may differ significantly from the greedy cost of the optimal
split plane, specifically by as much as half of the range of the cost
function. Because a step function has a large high frequency com-
ponent (up to infinite), any discrete sampling strategy suffers this
deficiency.

However, it turns out that in such cases the greedy SAH cost does
not correspond well to true (non-greedy) SAH cost if the next few
child splits are chosen well. Our algorithm chooses the child splits
well, for reasons that we will explain next. As a result, the degrada-
tion in the true SAH cost caused by our algorithm’s approximation
is typically small even for a cost function with discontinuities.

A key property of our algorithm is that the sample points it
chooses rapidly converge towards a discontinuity. The convergence
occurs both through adaptive sampling within a single node, and
through samples chosen recursively in child nodes. In fact, as we
will show, the larger the discontinuity is, the more rapid the conver-
gence. The net effect of this convergence is that after a few splits,
the discontinuity will be isolated into a small volume (and hence
generally a small surface area). Since the true SAH cost recursively
considers the product of cost with surface area, the true SAH cost
penalty for non-optimal split locations near a discontinuity is gen-
erally small, even when the greedy SAH cost penalty appears to be
large.

Mathematically, the convergence property of our algorithm is ex-
pressed as a guaranteed bound on the product of the cost error with
the split-plane position error. That is, if there is a large bound on the
error in cost, there is a small bound on the error of the location of
the split plane, and vice-versa. This falls out directly from the fact
that the proof provides error bounds in terms of the product of the
domain and the range of the function (or segment) being approxi-
mated. Thus, for very large bounds on cost error, as occur near a
discontinuity in the cost function, the algorithm will choose split
planes close to the discontinuity. After a few splits, the discontinu-
ity will be isolated in a small volume, and thus contribute very little
to the true (non-greedy) SAH cost.

5.2 Adaptive sampling algorithm

As we have discussed, our algorithm approximates the SAH cost
function by sampling it at a fixed number of locations. Instead of
sampling the cost function itself, we sample all four varying inputs
to the cost function (Cr, Cgr, SAr, and SAg). By linearly interpolat-
ing each input, we are able to generate a quadratic approximation
to the cost function between each pair of sample points.

It would be possible to stop at this step and choose a split plane
at the minimum of the piecewise-quadratic approximation to the
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Figure 3: Use a comb sample along range of C;, — Cg to find segments
with large error.
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Figure 4: Sample evenly in the segments with large error.

cost function. However, if the cost function is ill-behaved, the error
bounds on the segment(s) that potentially contain the minimum may
be loose. That is, there may be considerable uncertainty as to the
actual behavior of the cost function in the vicinity of the minimum,
and thus the choice of the location of the minimum may be poor.

Figure 2 illustrates this situation. Note that in this figure, rather
than plotting the cost function, we plot C; — Cg, which (as ex-
plained in Appendix A) is useful as a tool for error analysis due
to the fact that bounds on Cy — Cg simultaneously bound Cy, and Cg
and in turn bound cost(x). In Figure 2, there is a large amount of
uncertainty about the behavior of C;, — Cg in the last segment.

To improve the error bounds, a second set of g samples is taken,
with the locations for this second set of samples chosen adaptively
based on the information from the first set of samples. We choose
the sample locations using a simple algorithm which we illustrate
graphically in Figures 2—6.

We want to place additional samples in those segments for which
there is a large change in C;, — Cg within the segment. A simple
but effective mechanism for choosing these new sample locations
is to create n bins for the values that C; — Cg may take, and then
require an additional sample within a segment each time that C; —
Cg crosses a bin boundary within that segment. This is equivalent
to taking ¢ additional samples regularly along the range of Cy — Cg,
as illustrated in Figure 3.

Once it has been decided how many of the additional samples
are allocated to each of the original segments, these additional sam-
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Figure 5: Approximate Cr, Cg and cost.
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Figure 6: The actual cost function, notice the minimum is slightly
off from the predicted value.

ples are positioned such that they are evenly spaced within their
respective segments (Figure 4).

The end result of the two sampling steps is a piecewise quadratic
approximation to the cost function, using 2q samples. As shown
in Appendix A, the product of cost error and position error has an
0(1/¢%) bound between adjacent pairs of samples with this adap-
tive sampling technique. This is important because it governs the
rate of convergence for iterations of the sampling process. In this
context, scans within children may be considered iterations.

To choose the split plane location for the node, we consider the
local minima of each of the 2g — 1 piecewise quadratic segments,
and place the split plane at the overall minimum. As with any
kd-tree builder, if the estimated cost of splitting at this location is
greater than the cost of not splitting, a leaf node is formed.

6 IMPLEMENTATION

6.1 Implementation of scan

As mentioned earlier, our algorithm for choosing a split plane does
not sort the bounding boxes, but instead scans over them one or
more times to accumulate various information.

In the simplest implementation of the algorithm, each evalua-
tion of the cost function at a sample point requires a scan over the
bounding boxes. Thus, evaluating the cost function at five sample
points along the x-axis would require five separate scans over the
bounding boxes. During a single scan, two quantities are computed:



e C; — Number of primitives that lie partially or completely to
the left of the sample point along the relevant axis.

e Cg — Number of primitives that lie partially or completely to
the right of the sample point along the relevant axis.

To improve efficiency, it is possible to evaluate the cost function
at multiple sample points in a single scan. For example, on modern
machines with 4 x FP32 register SIMD support (e.g., SSE), it is
possible to evaluate four sample points in one pass using inner-loop
code of the form:

Cr += ((AABB.upperbound > sampleLocation) ? 1 : 0);
C. += ((AABB.lowerbound < sampleLocation) ? 1 : 0);

where all of the variables are 4-wide vectors and
all of the operators are 4-wide vector operators. The
conditionals are implemented using masks rather than
branches.

It is possible to evaluate the cost function at even more sample
points in a single scan by maintaining additional pairs of contain-
ers for the Cp and Cg values associated with the additional sample
points. Since each scan must read every AABB once, by combin-
ing scans we reduce the number of memory accesses. This mech-
anism is not limited to combining scans for a single axis — it may
also be used to combine the scans for the X, Y, and Z axes. These
scan-combining optimizations are most important at the top of the
acceleration structure, where the AABBs do not fit in cache and
the scans become memory-bandwidth bound. Note, however, that a
minimum of two scans is required, one for the first set of samples,
and another for the adaptive samples.

Toward the bottom of the acceleration structure, the decision as
to how many samples to evaluate in a single scan becomes more
complex. Once all of the AABBs fit in cache, the implementation
on modern machines may become compute dominated. In this case,
scan combining is still beneficial, but only up to the point where all
of the temporary variables fit in registers. On today’s 64-bit x86
architectures, for example, 16 samples may be evaluated in a single
scan without any register spilling. Note that a scan organized in this
way performs no writes to memory at all until it completes.

The compactness and high speed of the scanning algorithm make
the approach fast even for large amounts of geometry. The scan-
ning approach also lends itself to a parallel implementation where
each CPU gets an allocation of the AABBs over which to evaluate
the splits. Once each CPU has completed its evaluation, a gather
operation can be used to combine the results. We have not yet im-
plemented this form of parallelization.

6.2 Exact evaluation of SAH near leaf nodes

Near the bottom of the tree the number of AABBs in a node is small
and the SAH cost function is generally much less smooth. Under
these conditions approximating the SAH is less effective, and it is
advantageous to evaluate it at the start and end of every AABB.
Fortunately, exact evaluation is inexpensive for a small number of
AABBs.

After experimenting with various sorting algorithms, we con-
cluded that a modified version of our vectorized scanning algorithm
performed better than any standard sorting algorithm for a small
number of AABBs. Rather than choosing the sample points uni-
formly, we generate a sample point for the start and end of each
AABB in the node, and use our scanning algorithm to evaluate the
cost function at each sample point. The results from this algorithm
are equivalent to the standard sorting approach. Asymptotically this
algorithm is O(m?) in the number of AABBs, but for small m it is
faster than the O(mlogm) sorts that we have tried.

6.3 Implementation of overall algorithm

There are a number of ways in which our approach can make a
tradeoff between tree-construction time and tree quality. The fol-
lowing are the mechanisms for adjustment, along with the values
we use for them:

e Number of uniform samples per axis at each node: 8
e Number of adaptive samples per axis at each node: 8

e Node size below which we switch to evaluating SAH for all
axes vs. evaluating just along longest axis. We report three
sets of results:

— oneaxis: always use one axis

— hybrid: use one axis for more than 1024 AABBs, all
axes for less or equal

— allaxes: always use all axes

e Node size below which we switch to exact SAH evaluation:
<36 AABBs

e Relative node weight —i.e. SAH cost of intersecting a kd-tree
node vs. cost of intersecting an AABB in a leaf node: one-to-
one

e Empty space bonus — Hurley, et al. [10] showed that it is
useful to weight the SAH more heavily in favor of cutting off
empty space: We use a cost weighting factor of 0.85 for any
node with an empty sibling.

6.3.1 Additional optimizations

A kd-tree builder must perform two tasks at each node. First, it
must choose a split plane (and evaluate any associated cost func-
tions). We refer to this first task (which has already been discussed,
although not by this name) as splitting. Second, it must create two
lists of child nodes based on the chosen split plane. We refer to
this second task as sifting. Note that for a kd-tree, a single AABB
may be copied into both children, so sifting is more complex for a
kd-tree than a B-KD tree [24, 18].

Our sifting implementation uses two important optimizations.
First, memory is managed carefully, with the left child overwrit-
ing the parent storage, and the right child allocated linearly from
a heap. Second, we copy pointers to AABBs instead of the actual
AABBs. Although this strategy necessitates a pointer de-reference
when reading AABB bounds, the performance improvement result-
ing from reducing the size of memory copies outweighs the perfor-
mance penalty of pointer de-referencing.

7 RESULTS

We have implemented a SIMD-vectorized (using SSE) version of
our kd-tree building algorithm as a stand alone package and evalu-
ated it both for build performance and tree quality. We then imple-
mented the same algorithm within the Razor system [17] in order to
evaluate the practical effect of tree quality on render time. The re-
sults in Table 1 demonstrate that our algorithm’s kd-tree build per-
formance is competitive with other interactive acceleration struc-
ture builds and that the quality of the resulting kd-trees is almost as
good as that produced by a sorting method.

Although the Razor system normally uses a lazy kd-tree builder,
it was modified to force a full (non-lazy) tree build to make the mea-
surements presented in this paper. Rendering time was measured
with the system configured to use large numbers of both primary
rays (4x super sampling) and secondary rays (area light sources).



Because Razor has some fixed per-ray overhead for multiresolu-
tion ray tracing, a non-multi-resolution ray tracer would likely see
somewhat larger percentage changes in rendering times than those
shown in Table 1. This is one of the reasons we also report tree
quality using SAH cost.

Several of the results in Table 1 are outliers deserving further
discussion. First, the Courtyard scene has an especially low SAH
cost (i.e. high tree quality). We attribute this behavior to the fact
that the scene is composed of 4 x 4 axis aligned instances of a sin-
gle sub-scene. Second, the Soda Hall scene has high SAH cost
(i.e. low tree quality) and a fast build time. We believe this behav-
ior is caused by the large wall polygons in the scene which cause
the SAH to terminate earlier, producing larger leaf nodes. Finally,
Table 1 is missing rendering time results for the Armadillo and
Soda Hall scenes due to memory-consumption issues in the cur-
rent implementation of Razor.

All of the results we present are for builds from an AABB
“soup”. Preliminary experiments indicate that lazy building and
the use of pre-existing hierarchy (e.g., from a scene graph) can be
combined with the algorithm presented in this paper to yield further
dramatic improvements in build times. We expect to report these re-
sults in a future publication. It should be noted that the algorithm
presented in this paper benefits strongly from lazy building, because
most of its time is spent on nodes near the bottom of the tree (fewer
than 100 elements), which are the ones most readily culled in a lazy
build.

We have not yet exhaustively experimented with all of the param-
eters in our algorithm. In particular, we have not carefully evaluated
the impact of changing the number of fixed and adaptive samples
(currently eight and eight respectively), because in an optimized
implementation these settings cannot be changed arbitrarily. The
current settings provide a good balance between build time and tree
quality, but changing them would allow additional tuning of this
tradeoff.

Our algorithm switches to exact evaluation of the SAH for nodes
below a certain size (currently 36 AABBs). This cutoff was cho-
sen to lie at the point where the cost of O(mz) brute-force search
grew to be greater than that of the O(m) two-pass adaptive sampling
algorithm.

Figure 7: The Courtyard Scene (character models (©2003-2006 Dig-
ital Extremes, used with permission)

Figure 8: The Daz Fairy Scene

8 DISCUSSION

We have set out to demonstrate that SAH based acceleration struc-
tures — and in particular kd-trees — are a viable acceleration structure
for interactive and real-time ray-tracing of dynamic scenes. With a
build time of 0.26 seconds for a 180k triangle model, interactive
performance is already a reality. We believe that kd-trees and other
SAH-based acceleration structures will turn out to be the most ef-
fective acceleration structure for real-time ray-tracing applications.
Build times can be improved even further with additional paral-
lelization, low level optimizations and the future use of additional
information, such as pre-sorted geometry or scene graph hierarchy
during construction. The advantages of high-quality acceleration
structures are especially important for ray tracers that trace large
numbers of secondary rays, since in these systems it is especially
favorable to increase build time slightly in order to decrease traver-
sal time.

Another important feature of this algorithm is that it interacts fa-
vorably with lazy building of the acceleration structure. In a lazy
system with n pieces of geometry of which only m, m << n pieces
of geometry are touched, the size of the tree produced is mlogm.
However, any system that sorts must sort the entire n pieces of
geometry for the first split, leading to an nlogn build algorithm.
Since our approach only does linear work at each step, it only takes
n~+ mlogm time to build the entire tree. (The n accounts for the
initial pass.) This asymptotic improvement in runtime may provide
a substantial improvement in the build times for lazy systems.
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Table 1: Build Performance Measurements, using one core of a 2.4 GHz Intel Core 2 Duo processor (“Conroe”), with 4MB of L2 cache
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A ERROR BOUNDS

In order to bound the error of our approximation of the SAH cost
function we first bound the error on each of its components. The
focus of the rest of this section is providing error bounds for the
piecewise linear approximations of the monotone functions Cy, and
Cr.

A.1 Linear Approximation

For an arbitrary integrable function f and an approximation f, we
may define the error of the approximation over domain (a,b) to be

ff lf— ﬂ If f is a monotone function and f is a linear approx-

imation of f over (a,b) with f(a) = f(a) and f(b) = f(b), the
maximum error of the approximation (according to this metric) is
w. We do not provide proof of this simple theorem
here, but Figure 9 should provide some intuition as to why it is
true. We refer to this bound as the linear approximation bound (of
a monotonic function).

N ix)

Figure 9: Monotonicity guarantees that the function does not leave
the box. The area between the function and its linear approximation
cannot be more than % the area of the box, giving us our bounds.

A.2 Uniformly Spaced Linear Approximation

A uniformly spaced piecewise linear approximation provides a
better error bound for monotone functions. When approximat-
ing a monotone function f we may take n evenly spaced points
Xiyi € [0,n) s.t. xo = a and x,,_| = b. Let f be the piecewise linear
approximation of f such that Vx € [0,n) f(x) = f(x) and f is linear
between all x;,x;;1 pairs. The following bound holds given the as-
sumptions: f is an integrable monotone function, n > 2 and (a,b)
is a non-empty range.

~ b ~
error(F) = [1r=7]
) |17
{the linear approximation bound}
| — x| () — f (x|
< ;1 5
{f is monotone }
i — x| (F (i) — f(xie1))
< |i:Z1 5 |
=1 = ==}

_ba
= gy L)~ f )

i=1

{f(x;)is a telescoping sum}

(b—a)|f(b) - f(a)|
2(n—1)

This bound improves over the linear approximation bound by a
factor proportional to % We will refer to it as the evenly spaced
piecewise linear approximation bound (of a monotone function).

A.3 Adaptive Linear Approximation

Although the evenly spaced piecewise linear approximation pro-
vides an improved error bound for f, it provides no information
about the locality of error. Each segment (x;,x;11) contains some
fraction ¢ of the overall error in our piecewise linear approxima-
tion but we have no guarantee that any one segment doesn’t contain
most or all of the error. By adding at most n additional samples (us-
ing our adaptive method), we may ensure that each segment con-
tains proportional to % of the overall error.

Using the piecewise linear approximation bounds, adding |no; |
evenly spaced points to a segment reduces its error proportional to
(lnog) + 1)1, Tt should be noted that two additional samples are
avaliable in each segment: the endpoints. This accounts for the ad-
dition, rather than the subtraction, of 1 in this reduction of error.

If the error was initially o ==}/ after the additional

samples it becomes a;%. This quantity is pro-
(i1 =) |f (i) —f (i) |

portional to providing us an error bound on

2n2
each segment proportional to nl, We will refer to this bound com-
bined with the evenly spaced linear approximation bound as the
adaptive linear approximation bound. Z?:_I.Lnaij <YL nop=n
proves that this process takes at most n additional samples overall.

A.4 Bounds for the Cost Function

Recall the SAH cost function:
cost(x) = Cy+ CLPL(x) + CrPr(x)

Because Cr; and Cg are monotone, we may sample them
adaptively and achieve the adaptive linear approximation bound.
Cr, PL(x) and Pg(x) are computable directly and have no error. The
error bounds for the cost function are derived here.

error(cost(x)) = error(Cp)PL(x)+ error(Cg)Pr(x)
{PL,Pr € [0,1]}
error(Cp) + error(Cg)

IA

{f(x;)evenly spaced linear approximation bound}
(b—a)|Cr(b) —Cr(a)|

(b—a)|CL(b) —CL(a)]

2(n—1) 2(n—1)
(b—a)(|CL(b) — CL(a)| +|Cr(D) — Cr(a)])
2(n—1)

Slightly more work is required to achieve the adaptive bound for
cost(x) because we are choosing only one additional set of points
and must bound error for both C;, and Cg. Since C;, and —Cpg are
both monotone increasing, so is their sum. Also, since the range of
Cr — Cg is equal to the sum or the ranges of Cy, and Cg, any bound
for Cp — Cp is also a bound for Cy and for Cg. Using the adaptive
bound for C; —Cr we can show that the error between any two sam-
ples over C; — Cg is of the order (b_a)(‘CL(b)_CL(:2)|+|CR(b)_CR(a)D.
The same bound holds for the error between any two samples
on Cr and Cg. Since adding the error of Cz and Cg together
only increases overall error by a factor of two and P, and Pg are
< 1. The error between any two points in cost(x) is also order of

<b7“)(‘CL(b)7CL(:2)|HCR<Z7>7CR(“)|>. This completes the error analysis
for using at most 2n samples with our adaptive scheme.




